首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2008年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Among the various components of the water balance, measurement of evapotranspiration has probably been the most difficult component to quantify and measure experimentally. Some attempts for direct measurement of evapotranspiration have included the use of weighing lysimeters. However, quantification of evapotranspiration has been typically conducted using energy balance approaches or indirect water balance methods that rely on quantification of other water balance components. This paper initially presents the fundamental aspects of evapotranspiration as well as of its evaporation and transpiration components. Typical methods used for prediction of evapotranspiration based on meteorological information are also discussed. The current trend of using evapotranspirative cover systems for closure of waste containment facilities located in arid climates has brought renewed needs for quantification of evapotranspiration. Finally, case histories where direct or indirect measurements of evapotranspiration have been conducted are described and analyzed.  相似文献   
2.

The last half-century has witnessed a proliferation in the use of polyvinyl chloride (PVC) pipes in civil engineering applications. However, little physical data are available to date to assess conformance with performance limits of these pipes subjected to events involving localized ground subsidence. In this study, experimental results are generated and evaluated from a series of physical models involving a buried PVC pipe overlying a localized subsiding bedding zone. Ground subsidence was simulated using a precisely controlled trapdoor system positioned at mid-length of the pipe. A technique including the use of a custom-made displacement transducer was developed as part of this study to facilitate collection of continuous deflection profiles along the axis of the pipes. The progressive development of soil arching was also monitored using earth pressure sensors placed on the top, sides, and at several locations beneath the pipe, both within and beyond the zone of ground subsidence. Strains in the external wall of the pipe were also monitored. The results indicate that significant bending developed in the portion of the pipe traversing the subsidence zone, especially at the pipe crown. Beyond this point, radial deflections of the pipe cross section continued to be detected along the pipe length to distances of approximately four pipe diameters. Ground subsidence induced a severe redistribution of the earth pressures measured in the soil mass surrounding the pipe. A significant increase in vertical soil pressures beneath the pipe was captured within a distance of about one pipe diameter outside the subsidence zone. The overall response of the PVC pipe to localized ground subsidence was found to improve with increasing backfill density and decreasing soil confinement.

  相似文献   
3.
Wu  Yaojie  Zhao  Yu  Gong  Quanmei  Zornberg  Jorge G.  Zhou  Shunhua  Wang  Binglong 《Acta Geotechnica》2022,17(7):2971-2994
Acta Geotechnica - In the classical conception of the arching mechanism, the well-known trapdoor problem assumes distinctive modes (e.g., either active or passive mode) in the original geostatic...  相似文献   
4.
Costa  Yuri D. J.  Zornberg  Jorge G. 《Acta Geotechnica》2020,15(11):3211-3227
Acta Geotechnica - The classic trapdoor configuration has been useful to examine the changes in stresses expected on buried structures. However, the primary focus of previous studies has been on...  相似文献   
5.
Zhang  Genbao  Chen  Changfu  Zornberg  Jorge G.  Morsy  Amr M.  Mao  Fengshan 《Acta Geotechnica》2020,15(8):2159-2177

This study aims at investigating the influence of moisture conditions on interface shear behavior of element-grouted anchor specimens embedded in clayey soils. The tests involved comparatively short embedment lengths and a device that was specially designed to facilitate moisture conditioning. Rapidly loaded pullout tests as well as pullout tests under sustained (creep) loading were conducted to characterize both the short-term and long-term ultimate shear strength of anchor–soil interfaces. Both values of the interface shear strength were found to decrease exponentially with increasing moisture content values, although their ratio was found to show a linearly decreasing trend with increasing moisture content. The interface shear creep response under pullout conditions was characterized by a rheological hybrid model that could be calibrated using experimental measurements obtained under increasing stress levels. The accuracy of the hybrid model was examined by evaluating the stress-dependent prediction model as well as its governing parameters. This investigation uncovers the coupled impact of soil moisture condition and external stress state on the time-dependent performance of grouted anchors embedded in clayey soils by correlating the interface shear strength with soil moisture content and associating the creep model with stress levels applied to the grout–soil interface.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号