首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
地球物理   1篇
地质学   3篇
自然地理   2篇
  2009年   1篇
  2001年   2篇
  2000年   1篇
  1989年   1篇
  1981年   1篇
排序方式: 共有6条查询结果,搜索用时 125 毫秒
1
1.
This paper documents a complex sequence of interbedded lapilli-fall, base-surge, and pyroclastic-flow deposits, here named the Monte Guardia sequence, that erupted from volcanic centers in the southern part of Lipari (Aeolian Island Arc). Radiocarbon data from ash-flow tuffs above and below this sequence bracket its eruption between 22,600 and 16,800 years ago. Geologic evidence, however, suggests that this single eruptive cycle had a more restricted duration of years to tens-of-years. The basis for our interpretations comes from data measured at 38 detailed sections located throughout the island. The Monte Guardia sequence rests on a series of lower rhyolitic endogenous domes in the southern part of Lipari and it covers the oldest lavas, lahars, and pyroclastic flows in the north. Only in the northeast part of the island is it covered by younger deposits which there consist of lapilli tuffs and lavas of the Monte Pilato rhyolitic cycle. The deposit ranges in thickness from more than 60 m surrounding the vents in the south to less than a few decimeters at 10 km distance in the north. Throughout most of the island the Monte Guardia sequence overlies a thin andesitic lapilli-fall layer which is a key bed for correlation. This lapilli tuff probably erupted from a volcanic center on another island of the Aeolian Arc (possibly Salina). The principal activity of the Monte Guardia sequence started with an explosion that formed a continuous breccia blanket covering most of the island. Some pumiceous blocks within this breccia are composed of alternating bands of acidic and andesitic composition suggesting that the initiation of pyroclastic activity could have been triggered by magma mixing. Typical Monte Guardia sequence consists of explosive products that grade from magmatic (pumice-fall) to phreatomagmatic (base-surge) character. The eruptive cycle is characterized by a number of energy decreasing megarhythms that start with a lapilli-fall bed and end with a base-surge set that progresses through sand-wave, massive, and planar beds. Isopach maps of the fall and surge deposits indicate that both types were directed to the northwest by prevailing winds. Existing topographic relief was an additional factor that affected the emplacement of surge products. At the end of the cycle andesitic pyroclastic flows and rhyolitic endogenous domes were emplaced above the Monte Guardia deposits near the vent.  相似文献   
2.
Abstract Using a detailed petrographical procedure conceived for arenites rich in carbonate clasts, the influence of tectonism and eustacy on silicate/carbonate cycles of the Eocene Hecho Turbidite Complex has been tested, and the palaeogeography of the source/basin system outlined.
Both extrabasinal and intrabasinal sources of sediments were active during basin filling. The extrabasinal source terrains, located in the southern sector of the basin, were made of the Pyrenean crystalline basement (granites, gneisses and phyllites) overlain mainly by carbonate rocks (Cretaceous limestones and dolostones, minor chert and siltstones). The intrabasinal sources, represented by foramol shelf carbonate factories, provided penecontemporaneous carbonate bioclasts, intraclasts and peloidal grains.
Foreland thrusting in the South-Central Pyrenees has acted as the major control on the composition and architecture of the Hecho Turbidite Complex. Strong uplift of old silicate and carbonate source terrains during southward thrust propagation was responsible for erosion, swamping and/or reduction of shelfal areas, and gave rise to siliciclastic and carbonate basinal sequences (silicate arenites and calclithites) during lowstand stages. Conversely, hybrid arenites (mixture of extrabasinal and intrabasinal grains) originated from resedimentation of marginal shelf sediments produced in carbonate factories active during the initial phase of sea-level rise. Hybrid arenites with minor intrabasinal content also formed during one stage of relative sea-level fall from the erosion of previously accumulated highstand complexes.
During resedimentation processes, hybrid sands underwent marked hydraulic selection documented by deposits depleted in carbonate grains in the channel area, and by thin-bedded turbidites rich in platy-skeletal fragments, low-density peloids and void-rich bioclasts down-basin.  相似文献   
3.
Abstract: Landslide research at the British Geological Survey (BGS) is carried out through a number of activities, including surveying, database development and real-time monitoring of landslides. Landslide mapping across the UK has been carried out since BGS started geological mapping in 1835. Today, BGS geologists use a combination of remote sensing and ground-based investigations to survey landslides. The development of waterproof tablet computers (BGS·SIGMAmobile), with inbuilt GPS and GIS for field data capture provides an accurate and rapid mapping methodology for field surveys. Regional and national mapping of landslides is carried out in conjunction with site-specific monitoring, using terrestrial LiDAR and differential GPS technologies, which BGS has successfully developed for this application. In addition to surface monitoring, BGS is currently developing geophysical ground-imaging systems for landslide monitoring, which provide real-time information on subsurface changes prior to failure events. BGS’s mapping and monitoring activities directly feed into the BGS National Landslide Database, the most extensive source of information on landslides in Great Britain. It currently holds over 14?000 records of landslide events. By combining BGS’s corporate datasets with expert knowledge, BGS has developed a landslide hazard assessment tool, GeoSure, which provides information on the relative landslide hazard susceptibility at national scale.  相似文献   
4.
Escanaba Trough is the southernmost segment of the Gorda Ridge and is filled by sandy turbidites locally exceeding 500 m in thickness. New results from Ocean Drilling Program (ODP) Sites 1037 and 1038 that include accelerator mass spectrometry (AMS) 14C dates and revised petrographic evaluation of the sediment provenance, combined with high-resolution seismic-reflection profiles, provide a lithostratigraphic framework for the turbidite deposits. Three fining-upward units of sandy turbidites from the upper 365 m at ODP Site 1037 can be correlated with sediment recovered at ODP Site 1038 and Deep Sea Drilling Program (DSDP) Site 35. Six AMS 14C ages in the upper 317 m of the sequence at Site 1037 indicate that average deposition rates exceeded 10 m/k.yr. between 32 and 11 ka, with nearly instantaneous deposition of one approximately 60-m interval of sand. Petrography of the sand beds is consistent with a Columbia River source for the entire sedimentary sequence in Escanaba Trough. High-resolution acoustic stratigraphy shows that the turbidites in the upper 60 m at Site 1037 provide a characteristic sequence of key reflectors that occurs across the floor of the entire Escanaba Trough. Recent mapping of turbidite systems in the northeast Pacific Ocean suggests that the turbidity currents reached the Escanaba Trough along an 1100-km-long pathway from the Columbia River to the west flank of the Gorda Ridge. The age of the upper fining-upward unit of sandy turbidites appears to correspond to the latest Wisconsinan outburst of glacial Lake Missoula. Many of the outbursts, or j?kulhlaups, from the glacial lakes probably continued flowing as hyperpycnally generated turbidity currents on entering the sea at the mouth of the Columbia River.  相似文献   
5.
Apatite fission-track analyses along a W–E-orientated transect across northern Corsica indicate an important episode of crustal exhumation in late early Miocene time. Samples taken from the Alpine orogenic wedge, from the adjacent foreland basin and from the crystalline basement complex flooring the basin are completely reset. This implies that a ≥ 2.0–2.3-km-thick crustal section made of thrust sheets and/or autochthonous foreland deposits has been removed by erosion since early Miocene time. A geometric projection of this lost cover towards the west indicates that all of northern Corsica was covered either by Alpine nappes or middle Eocene foreland deposits. Fission-track ages are the same across the main boundary fault system separating the Alpine orogenic wedge and the foreland, indicating the absence of significant differential vertical displacement between upper and lower plates during Neogene unroofing.  相似文献   
6.
ABSTRACT Apatite fission track ages of 20 samples collected from turbidite successions deposited in foreland basins adjacent to the Northern Apennines range between ∼3 and ∼10 Ma. The youngest fission track ages are concentrated in a NW–SE elongated belt, which approximately runs through the centre of the study area, while gradually increasing ages are distributed towards the south-western and north-eastern borders. Integration of apatite fission track data and published vitrinite reflectance values indicate this region of the Apennines experienced continuous but variable exhumation starting from ∼14 Ma. The extent of exhumation and uplift range between 5 and 6 km at the south-western and north-eastern borders of the study area, and ∼7 km in the central part. Exhumation was driven mainly by erosion, with minor faulting in response to structural readjustment related to differential exhumation. Regional exhumation and erosion are interpreted as the result of isostatic rebound following crustal thickening in the lower part of the orogen.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号