首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   1篇
海洋学   1篇
  2020年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Zooplankton samples were collected using 505, 160 and 77 μm mesh nets around a power plant during four seasons in 2011. We measured total length of zooplankton and divided zooplankton into seven size classes in order to explore how zooplankton community size-structure might be altered by thermal discharge from power plant. The total length of zooplankton varied from 93.7 to 40 074.7 μm. The spatial distribution of mesozooplankton(200-2 000 μm) populations were rarely affected by thermal discharge, while macro-(2 000-10 000 μm)and megalo-zooplankton(10 000 μm) had an obvious tendency to migrate away from the outfall of power plant.Thus, zooplankton community tended to become smaller and biodiversity reduced close to power plant.Moreover, we compared the zooplankton communities in three different mesh size nets. Species richness,abundance, evenness index and Shannon-Wiener diversity index of the 505 μm mesh size were significantly lower than those recorded from the 160 and 77 μm mesh size. Average zooplankton abundance was highest in the 77 μm mesh net((27 690.0±1 633.7) ind./m~3), followed by 160 μm mesh net((9 531.1±1 079.5) ind./m~3), and lowest in 505 μm mesh net((494.4±104.7) ind./m~3). The ANOSIM and SIMPER tests confirmed that these differences were mainly due to small zooplankton and early developmental stages of zooplankton. It is the first time to use the 77 μm mesh net to sample zooplankton in such an environment. The 77 μm mesh net had the overwhelming abundance of the copepod genus Oithona, as an order of magnitude greater than recorded for 160 μm mesh net and 100% loss through the 505 μm mesh net. These results indicate that the use of a small or even multiple sampling net is necessary to accurately quantify entire zooplankton community around coastal power plant.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号