首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   2篇
海洋学   3篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 6 毫秒
1
1.
基于向外长波辐射、降水、大气再分析资料和 HYCOM(HYbridCoordinateOcean Model)盐度等资料,研究了 MJO(Madden-JulianOscillation,热带大气季节内振荡)对南海夏季降水的调制,并初步探讨了其对海洋表层盐度的影响。结果显示:MJO 对南海夏季降水有显著的调制作用,导致南海降水具有强的季节内变化,其最显著周期为45d。降水季节内信号在泰国湾北部、吕宋岛以西和台湾岛西南等迎风坡区域较强,而在越南外海的安南山脉背风区域较弱,且降水信号会随着 MJO 信号向东北方向移动。MJO 对流抑制(活跃)中心所在区域,低层大气辐聚减弱(增强),中层大气对流减弱(增强),导致降水减少(增加);此外,MJO 对流抑制(活跃)中心伴随的反气旋式(气旋式)环流会改变风场,风场减弱(增强)使得迎风区域的降水减少(增加)。MJO 引起的降水异常进一步影 响南海盐度,南海表层盐度也有明显的季节内变化特征,其显著周期和降水基本一致,为47d,且盐度异常信号也随降水异常向东北移动。本研究结果有助于进一步了解南海降水和表层盐度的季节内变化特征。  相似文献   
2.
The coupled ocean–atmosphere–wave–sediment transport(COAWST) modeling system is employed to investigate the role of wave-mixing playing in the upwelling off the west coast of Hainan Island(WHU). Waves,tides and sea surface temperature(SST) are reproduced reasonably well by the model when validated by observations. Model results suggest the WHU is tidally driven. Further investigations indicate that inclusion of wave-mixing promotes the intensity of the WHU, making the simulated SST become more consistent with remote-sensed ones. Dynamically, wave-mixing facilitates the "outcrop" of more upwelled cold water, triggering stronger WHU and leading to a three-dimensional dynamical adjustment. From the perspective of time, wavemixing contributes to establishing an earlier tidal mixing front strong enough to generate WHU and that is, WHU may occur earlier when taking wave-mixing into consideration.  相似文献   
3.
Wave-current interaction and its effects on the hydrodynamic environment in the Beibu Gulf(BG) have been investigated via employing the Coupled Ocean–Atmosphere–Wave–Sediment Transport(COAWST) modeling system. The model could simulate reasonable hydrodynamics in the BG when validated by various observations.Vigorous tidal currents refract the waves efficiently and make the seas off the west coast of Hainan Island be the hot spot where currents modulate the significant wave height dramatically. During summer, wave-enhanced bottom stress could weaken the near-shore component of the gulf-scale cyclonic-circulation in the BG remarkably, inducing two major corresponding adjustments: Model results reveal that the deep-layer cold water from the southern BG makes critical contribution to maintaining the cold-water mass in the northern BG Basin.However, the weakened background circulation leads to less cold water transported from the southern gulf to the northern gulf, which finally triggers a 0.2°C warming in the cold-water mass area; In the top areas of the BG, the suppressed background circulation reduces the transport of the diluted water to the central gulf. Therefore, more freshwater could be trapped locally, which then triggers lower sea surface salinity(SSS) in the near-field and higher SSS in the far-field.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号