首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   3篇
海洋学   4篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2006年   1篇
  2002年   1篇
排序方式: 共有7条查询结果,搜索用时 20 毫秒
1
1.
Travel-time inversion is applied to seismic data to produce acoustic velocity images of the upper 800 m of the South Shetland margin (Antarctic Peninsula) in three different geological domains: (i) the continental shelf; (ii) the accretionary prism; (iii) the trench. The velocity in the continental shelf sediments is remarkably higher, up to 1000 m/s at 600–700 m below seafloor, than that of the other two geological domains, due to the sediment overcompaction and erosion induced by the wax and waning of a grounded ice sheet. Pre-stack depth migration was applied to the data in order to improve the seismic image and to test the quality of the velocity fields. Where the Bottom Simulating Reflector (BSR) is present, positive and negative velocity anomalies were found with respect to a reference empirical velocity profile. The 2D-velocity section was translated in gas hydrate and free gas distribution by using a theoretical approach. The analysis revealed that the BSR is mainly related to the presence of free gas below it. The free gas is distributed in the area with variable concentration and thickness, while the gas hydrate is quite uniformly distributed across the margin.  相似文献   
2.
One key step in seismic data processing flows is the computation of static corrections, which relocate shots and receivers at the same datum plane and remove near surface weathering effects. We applied a standard static correction and a wave equation datuming and compared the obtained results in two case studies: 1) a sparse ocean bottom seismometers dataset for deep crustal prospecting; 2) a high resolution land reflection dataset for hydrogeological investigation. In both cases, a detailed velocity field, obtained by tomographic inversion of the first breaks, was adopted to relocate shots and receivers to the datum plane. The results emphasize the importance of wave equation datuming to properly handle complex near surface conditions. In the first dataset, the deployed ocean bottom seismometers were relocated to the sea level (shot positions) and a standard processing sequence was subsequently applied to the output. In the second dataset, the application of wave equation datuming allowed us to remove the coherent noise, such as ground roll, and to improve the image quality with respect to the application of static correction. The comparison of the two approaches evidences that the main reflecting markers are better resolved when the wave equation datuming procedure is adopted.  相似文献   
3.
During the Antarctic summer of 2003–2004, new geophysical data were acquired from aboard the R/V OGS Explora in the BSR-rich area discovered in 1996–1997 along the South Shetland continental margin off the Antarctic Peninsula. The objective of the research program, supported by the Italian National Antarctic Program (PNRA), was to verify the existence of a potential gas hydrate reservoir and to reconstruct the tectonic setting of the margin, which probably controls the extent and character of the diffused and discontinuous bottom simulating reflections. The new dataset, i.e. multibeam bathymetry, seismic profiles (airgun and chirp), and two gravity cores analysed by computer-aided tomography as well as for gas composition and content, clearly shows active mud volcanism sustained by hydrocarbon venting in the region: several vents, located mainly close to mud volcanoes, were imaged during the cruise and their occurrence identified in the sediment samples. Mud volcanoes, vents and recent slides border the gas hydrate reservoir discovered in 1996–1997. The cores are composed of stiff silty mud. In core GC01, collected in the proximity of a mud volcano ridge, the following gases were identified (maximum contents in brackets): methane (46 μg/kg), pentane (45), ethane (35), propane (34), hexane (29) and butane (28). In core GC02, collected on the flank of the Vualt mud volcano, the corresponding data are methane (0 μg/kg), pentane (45), ethane (22), propane (0), hexane (27) and butane (25).  相似文献   
4.
A joint inversion of both first and refracted arrivals is applied on a seismic line, acquired onshore, in order to obtain a well‐resolved velocity field for the computation of static corrections. The use of different arrivals in the inversion involves exploiting the information derived from the different raypaths associated with each wave type, thus enhancing the reliability of the inversion. The data was gathered by Saudi Aramco in an area of the Arabian Peninsula characterized by strong lateral variations, both in topography and shallow velocity, and where therefore a well‐defined near‐surface velocity field is important. In addition to velocity, the depth distribution of the quality factor Q is computed from the tomographic inversion of the seismic‐signal frequency shift. Thus, the Q‐factor field is used to perform an inverse Q‐data filtering and improve the resolution of the final stacked section.  相似文献   
5.
We present the results obtained by processing high-resolution seismic data acquired along the spring line located in the Friuli-Venezia Giulia plain (NE of Italy), in order to characterize an important multilayered aquifer. This system is made of an unconfined layer and, at increasing depths, of several confined aquifers of variable thickness and hydraulic permeability, mainly consisting of sand and gravel material. The main targets of this study are two shallow aquifers located at about 30 m and 200 m depth respectively. The seismic method is not frequently used for this type of study but in this case, it was considered a good tool due to the depth of the targets. The detailed velocity model we obtained reveals lateral velocity variations with a maximum value of 600 m/s. The higher velocities could be associated to layers that are confined aquifers; in fact, sand and gravel are characterized by higher seismic velocity compared to clay layers. Pre-stack depth migration using this velocity model gives a clear picture of the multilayered aquifer, highlighting lateral changes of seismic amplitude along the main reflectors. Finally, vertical variations of Poisson's ratio, computed by amplitude versus offset analysis, provide useful information about the petrophysical properties, such as the fluid content of the subsoil and lithologic changes.  相似文献   
6.
Two seismic sections offshore Arauco and Coyhaique, Chile, have been analysed to better define the seismic character of hydrate-bearing sediments. The velocity analysis was used to estimate the gas-phase concentration, which can serve to correlate hydrate presence to the geological features. The velocity model allowed us to recognise the hydrate layer above the bottom simulating reflector (BSR), and the free gas layer below it. The velocity field is affected by strong lateral variation, showing maximum (above the BSR) and minimum (below the BSR) values in the southern sector. Here, highest gas hydrate and free gas concentrations were calculated (15% and 2.7% of total volume respectively). The estimated geothermal gradient ranges from 35 to 95°C/km. In the northern sector, the highest gas hydrate and free gas concentrations are 15% and 0.2% of total volume respectively, and the geothermal gradient is uniform and equal to about 30°C/km.  相似文献   
7.
In the last decades gas hydrate occurrence along the Chilean continental margin has been well documented. In order to better define the seismic character of the hydrate-bearing sediments, we performed a detailed velocity analysis by using the pre-stack depth migration on part of multichannel reflection seismic line RC2901-734 located offshore Coyhaique.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号