首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   1篇
地球物理   1篇
海洋学   4篇
自然地理   1篇
  2012年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1995年   1篇
  1981年   1篇
排序方式: 共有7条查询结果,搜索用时 218 毫秒
1
1.
2.
Data on source conditions for the 14 April 2010 paroxysmal phase of the Eyjafjallaj?kull eruption, Iceland, have been used as inputs to a trajectory-based eruption column model, bent. This model has in turn been adapted to generate output suitable as input to the volcanic ash transport and dispersal model, puff, which was used to propagate the paroxysmal ash cloud toward and over Europe over the following days. Some of the source parameters, specifically vent radius, vent source velocity, mean grain size of ejecta, and standard deviation of ejecta grain size have been assigned probability distributions based on our lack of knowledge of exact conditions at the source. These probability distributions for the input variables have been sampled in a Monte Carlo fashion using a technique that yields what we herein call the polynomial chaos quadrature weighted estimate (PCQWE) of output parameters from the ash transport and dispersal model. The advantage of PCQWE over Monte Carlo is that since it intelligently samples the input parameter space, fewer model runs are needed to yield estimates of moments and probabilities for the output variables. At each of these sample points for the input variables, a model run is performed. Output moments and probabilities are then computed by properly summing the weighted values of the output parameters of interest. Use of a computational eruption column model coupled with known weather conditions as given by radiosonde data gathered near the vent allows us to estimate that initial mass eruption rate on 14 April 2010 may have been as high as 108?kg/s and was almost certainly above 107?kg/s. This estimate is consistent with the probabilistic envelope computed by PCQWE for the downwind plume. The results furthermore show that statistical moments and probabilities can be computed in a reasonable time by using 94?=?6,561 PCQWE model runs as opposed to millions of model runs that might be required by standard Monte Carlo techniques. The output mean ash cloud height plus three standard deviations??encompassing c. 99.7?% of the probability mass??compares well with four-dimensional ash cloud position as retrieved from Meteosat-9 SEVIRI data for 16 April 2010 as the ash cloud drifted over north-central Europe. Finally, the ability to compute statistical moments and probabilities may allow for the better separation of science and decision-making, by making it possible for scientists to better focus on error reduction and decision makers to focus on ??drawing the line?? for risk assessment.  相似文献   
3.
4.
An analysis is presented of extratropical cyclone frequency, the 500 hPa height standard deviation field and the monthly 700 hPa height field in the Northern Hemisphere, together with precipitation in the Mackenzie basin and the Mackenzie River runoff. Spatial and temporal variability in the data are examined for the period 1965 to 1989, and a cross-correlation analyses is performed to determine the relationship between the runoff and the precipitation variations, and between the precipitation and the atmospheric circulation anomalies. It is found that precipitation fluctuations in the Mackenzie River drainage basin are strongly linked to variations in the Mackenzie River runoff and in the North Pacific storm tracks, with the time scale of variability ranging from interannual to decadal. The results are discussed in relation to the interdecadal Arctic climate cycle proposed by Mysak, Manak and Marsden, and revised by Mysak and Power. In particular, the latter authors hypothesized that, as part of this cycle, air-sea interactions and synoptic scale processes over the northwestern North Atlantic influenced, via cyclone movements in the Labrador Sea and Baffin Bay, precipitation in northern Canada and hence river runoff into the Arctic. The results of this study indicate that such influences on the precipitation in the Mackenzie basin are small, and hence that the Mysak-Power feedback loop which describes this climate cycle needs further revision.  相似文献   
5.
6.
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号