首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   14篇
  国内免费   1篇
测绘学   2篇
大气科学   21篇
地球物理   50篇
地质学   91篇
海洋学   29篇
天文学   32篇
自然地理   31篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   17篇
  2012年   10篇
  2011年   12篇
  2010年   8篇
  2009年   14篇
  2008年   17篇
  2007年   8篇
  2006年   11篇
  2005年   5篇
  2004年   9篇
  2003年   13篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   4篇
  1998年   3篇
  1997年   5篇
  1996年   1篇
  1995年   5篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1989年   2篇
  1988年   1篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
排序方式: 共有256条查询结果,搜索用时 296 毫秒
1.
2.
The Samborombon Bay wetland is located on the west margin of the Rio de la Plata estuary, in the Province of Buenos Aires, Argentina. This paper analyses the geological, geomorphologic, soil and vegetation characteristics of the southernmost sector of this wetland and their influence on surface water and groundwater. The study area presents three hydrologic units: coastal dunes, sand sheets and coastal plain. Coastal dunes and sand sheets are recharge zones of high permeability with well-drained, non-saline soils, and a few surface water flows. Changes in the water table are related to rainfall. Groundwater in coastal dunes is Ca–Mg–HCO3 to Na–HCO3, and of low salinity (590 mg/l). Groundwater in sand sheets is mainly Na–HCO3 with a salinity of about 1,020 mg/l. The coastal plain exhibits medium to low permeability sediments, with submerged saline soils poorly drained. Groundwater is Na–Cl with a mean salinity of 16,502 mg/l. A surface hydrological network develops in the coastal plain. Surface water levels near the shoreline are affected by tidal fluctuations; far from the shoreline water accumulates because of poor drainage. Both sectors have Na–Cl water, but the former is more saline. Human intervention and sea level rise may affect the wetland severely.  相似文献   
3.
4.
In July 2002, a combination of underway mapping and discrete profiles revealed significant along-shore variability in the concentrations of manganese and iron in the vicinity of Monterey Bay, California. Both metals had lower concentrations in surface waters south of Monterey Bay, where the shelf is about 2.5 km wide, than north of Monterey Bay, where the shelf is about 10 km wide. During non-upwelling conditions over the northern broad shelf, dissolvable iron concentrations measured underway in surface waters reached 3.5 nmol L−1 and dissolved manganese reached 25 nmol L−1. In contrast, during non-upwelling conditions over the southern narrow shelf, dissolvable iron concentrations in surface waters were less than 1 nmol L−1 and dissolved manganese concentrations were less than 5 nmol L−1. A pair of vertical profiles at 1000 m water depth collected during an upwelling event showed dissolved manganese concentrations of 10 decreasing to 2 nmol L−1, and dissolvable iron concentrations of 12–20 nmol L−1 in the upper 100 m in the north, compared to 3.5–2 nmol L−1 Mn and 0.6 nmol L−1 Fe in the upper 100 m in the south, suggesting the effect of shelf width influences the chemistry of waters beyond the shelf.These observations are consistent with current understanding of the mechanism of iron supply to coastal upwelling systems: Iron from shelf sediments, predominantly associated with particles greater than 20 μm, is brought to the surface during upwelling conditions. We hypothesize that manganese oxides are brought to the surface with upwelling and are then reduced to dissolved manganese, perhaps by photoreduction, following a lag after upwelling.Greater phytoplankton biomass, primary productivity, and nutrient drawdown were observed over the broad shelf, consistent with the greater supply of iron. Incubation experiments conducted 20 km offshore in both regions, during a period of wind relaxation, confirm the potential of these sites to become limited by iron. There was no additional growth response when copper, manganese or cobalt was added in addition to iron. The growth response of surface water incubated with bottom sediment (4 nmol L−1 dissolvable Fe) was slightly greater than in control incubations, but less than in the presence of 4 nmol L−1 dissolved iron. This may indicate that dissolvable iron is not as bioavailable as dissolved iron, although the influence of additional inhibitory elements in the sediment cannot be ruled out.  相似文献   
5.
C. Arnosti   《Marine Chemistry》2004,92(1-4):263
The observation that a fraction of organic matter produced in marine systems evades the concerted efforts of microbial communities and is buried in sediments suggests that there are ‘speed bumps’ in carbon degradation pathways that impede microbially driven remineralization processes. The initial step in degradation of macromolecules, extracellular enzymatic hydrolysis, is often stated to be ‘the’ rate-limiting step in carbon remineralization. Experimental investigations described here, however, demonstrate that at least in certain cases, microbes produce extracellular enzymes on time scales of hours to tens of hours in response to substrate addition, and hydrolysis is extremely rapid. If enzymatic hydrolysis can be rapid, what factors slow or stop organic matter degradation? A lack of the correct inducer to initiate enzyme production, and/or a lack of the correct organism to produce the required enzyme, may result in a complete lack of hydrolysis in certain environments—a barricade, rather than a speed bump. Preliminary evidence supporting this hypothesis includes a comparison of polysaccharide hydrolysis in seawater and sediments, which demonstrates that the spectrum of enzymes active in seawater and sediments are fundamentally different. Furthermore, a survey of enzyme activities in surface waters from a range of locations suggests that pelagic microbial communities also differ widely in their abilities to express specific extracellular enzymes. Trans-membrane transport through porins is yet another potential location of structure-related selectivity.Our efforts to identify speed bumps and barricades are hampered by our inability to structurally characterize in sufficient detail the macromolecular structures present in marine systems. Furthermore, assessments of organic matter ‘quality’ from a chemical perspective do not necessarily accurately reflect the availability of organic carbon to microbial communities. For these communities, in fact, ‘quality’ may be a variable, which depends on the enzymatic and uptake capabilities of community members. To begin to assess substrate structure and quality from a microbial perspective, we will have to combine specific knowledge of macromolecular structures with detailed investigations of the enzymatic and transport capabilities of heterotrophic marine microbes.  相似文献   
6.
7.
Abstract. Food preferences of six dominant salt marsh invertebrates were studied to identify detritivores and to assess differences in their diets. Animals fed on agar suspensions of dead and live foods in petri dishes with four compartments. Only two foods were included in each dish. Relative palatability was assessed by measuring the amount of suspension removed or by counting the number of feeding marks left on the surface of the suspensions.
Feeding marks reflected differences in mouth parts and feeding mechanisms of the six invertebrates. Melampus bidentatus, Orchestia grillus , and Philoscia vittata preferred dead litter over live tissues of marsh graminoids, blue-green algae, and sulfur bacteria. No preference for detritus from different graminoids was shown by M. bidentatus. Orchestia grillus fed preferentially on Spartina patens detritus. Philoscia vittata preferred detritus from S. alterniflora and S. patens. Blue-green algae and sulfur bacteria were preferred over detritus by Littorina saxatalis , but detritus was preferred over live graminoids. Littorina saxatalis fed preferentially on Juncus gerardi detritus. Blue-green algae, sulfur bacteria, and live graminoids were preferred over detritus by L. littorea. Talorchestia longicornis also preferred blue-green algae.
On the basis of their food preferences, Littorina saxatalis, Melampus bidentatus, Orchestia grillus , and Philoscia vittata were classified as detritivores. Feeding on detritus from different plant species could result in a partitioning of this food resource in the detritus-based food chains of the salt marsh ecosystem.  相似文献   
8.
Narragansett Bay has been heavily influenced by human activities for more than 200 years. In recent decades, it has been one of the more intensively fertilized estuaries in the USA, with most of the anthropogenic nutrient load originating from sewage treatment plants (STP). This will soon change as tertiary treatment upgrades reduce nitrogen (N) loads by about one third or more during the summer. Before these reductions take place, we sought to characterize the sewage N signature in primary (macroalgae) and secondary (the hard clam, Mercenaria mercenaria) producers in the bay using stable isotopes of N (δ15N) and carbon (δ13C). The δ15N signatures of the macroalgae show a clear gradient of approximately 4‰ from north to south, i.e., high to low point source loading. There is also evidence of a west to east gradient of heavy to light values of δ15N in the bay consistent with circulation patterns and residual flows. The Providence River Estuary, just north of Narragansett Bay proper, receives 85% of STP inputs to Narragansett Bay, and lower δ15N values in macroalgae there reflected preferential uptake of 14N in this heavily fertilized area. Differences in pH from N stimulated photosynthesis and related shifts in predominance of dissolved C species may control the observed δ13C signatures. Unlike the macroalgae, the clams were remarkably uniform in both δ15N (13.2 ± 0.54‰ SD) and δ13C (−16.76 ± 0.61‰ SD) throughout the bay, and the δ15N values were 2–5‰ heavier than in clams collected outside the bay. We suggest that this remarkable uniformity reflects a food source of anthropogenically heavy phytoplankton formed in the upper bay and supported by sewage derived N. We estimate that approximately half of the N in the clams throughout Narragansett Bay may be from anthropogenic sources.  相似文献   
9.
Carol S. Breed 《Icarus》1977,30(2):326-340
Geomorphic features in the Hellespontus region, Mars, were compared with dunes of the crescentic ridge type in numerous terrestrial sand seas quantitatively by dimensional analysis of dune lengths, widths, and wavelengths. Mean values for the Hellespontus dunes are close to mean values derived from measurements of all sampled terrestrial sand seas. Terrestrial analogs of form and areal distribution of the Hellespontus dunes are shown by comparison of scale ratios derived from the measurements. Dunes of similar form occur in South West Africa, in Pakistan, in the southeastern Arabian peninsula, in the Sahara, in eastern USSR and northern China, and in western North America. Terrestrial analogs closest to form and areal distribution of the Hellespontus dunes are in the Kara Kum Desert, Turkmen SSR, and in the Ala Shan (Gobi) Desert, China.  相似文献   
10.
By studying landscape form and patterns, we can study processes at multiple scales and determine how collectively those processes inform us about function(s). Integrating landscape ecology from a biogeographical perspective with geographic information science (GIScience) practices offers new ways to study how landscapes change over time and space, including how they can be measured, analyzed, and modeled for management needs. This article presents methodologies and selected results of analyzing spatial patterns from field data across multiple scales by examining standing dead tree (snag) processes across wildfire‐disturbed landscapes in Arizona. Our primary motivation was to illustrate a particular type of work benefiting from the coalescing of landscape ecology and GIScience, functioning at the methodological and practical overlap of these two contributing fields. Our management goals were to (1) describe spatial patterns and characteristics of snags in pairs of burned and unburned ponderosa pine forests of Arizona in four recent (within the past ten years) wildfires, (2) document bird response to wildfires by combining landscape ecology and GIScience methods, and (3) link these patterns to snag monitoring plots and cavity‐nesting bird use to predict the probability of snag use by birds and cavity nesters based on snag characteristics (snag use model). The methods and results demonstrate how integration of landscape ecology with both GIS and GIScience improves the ways to study landscapes and land management issues, in this case offering guidelines for retention of snags that provide habitat for wildlife.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号