首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   14篇
  国内免费   1篇
测绘学   3篇
大气科学   33篇
地球物理   64篇
地质学   135篇
海洋学   29篇
天文学   45篇
自然地理   36篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   7篇
  2018年   8篇
  2017年   8篇
  2016年   9篇
  2015年   5篇
  2014年   8篇
  2013年   21篇
  2012年   11篇
  2011年   15篇
  2010年   13篇
  2009年   17篇
  2008年   22篇
  2007年   10篇
  2006年   12篇
  2005年   6篇
  2004年   12篇
  2003年   20篇
  2002年   11篇
  2001年   6篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1996年   1篇
  1995年   7篇
  1994年   7篇
  1993年   3篇
  1992年   1篇
  1991年   6篇
  1989年   4篇
  1988年   3篇
  1987年   8篇
  1986年   4篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1974年   1篇
  1973年   6篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
排序方式: 共有345条查询结果,搜索用时 15 毫秒
1.
The study of the chemical stability of vitreous material in aqueous media is well‐established. There has to date been little consideration of the implications of variations in the chemical durability of tephra in Quaternary tephrochronology. Chemical alteration can take the form of cationic leaching from the matrix, or complete destruction of the silica network, either of which could constrain the ability to chemically identify distal tephra. Here we apply established models of vitreous durability to the published chemical analyses of a large number of Icelandic tephras in order to predict their relative durabilities under equivalent conditions. This suggests that some important tephras have relatively poor chemical stability, and that rhyolitic tephras are, in general, more stable than basaltic. We conclude that tephras should be expected to show predictable differential chemical stability in the post‐depositional environment. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
2.
Natural and agricultural wetlands are considered to be the major sources of global atmospheric methane (CH4). A one‐dimensional model was developed to simulate methane emission and used to examine the influence of various physical processes on the rate of methane emission. Three processes involved in the methane emission are implemented in the model: production, reoxidation and transport. Three transport pathways were considered: diffusion across water–air or soil–air interfaces, ebullition and diffusion through plants. These pathways are influenced by soil properties, plant growth, water‐table conditions, temperature and external inputs (e.g. fertilizer). The model was used to examine the seasonal variation of the methane emission at a rice field in Hunan, China, which was observed during a field experiment for consecutive (early and late) rice seasons in 1992. The observed seasonal variations of methane emission, and role of plants in transporting methane to the atmosphere, are captured by the model simulation. Further model applications were conducted to simulate effects of fertilizer and water‐level condition on the methane emission. The results indicate that unfermented organic fertilizer produces a higher methane emission rate than mineral fertilizer. The simulations with treatments of a deep‐water covering and constant moisture reduced the methane emission. The rice field study provides a framework for further development of the model towards simulations based on spatially distributed variables (e.g. water table, soil temperature and vegetation) at a regional scale. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
A palaeotemperature reconstruction based on periglacial phenomena in Europe north of approximately 51 °N, is compared with high‐resolution regional climate model simulations of the marine oxygen isotope Stage 3 (Stage 3) palaeoclimate. The experiments represent Stage 3 warm (interstadial), Stage 3 cold (stadial) and Last Glacial Maximum climatic conditions. The palaeotemperature reconstruction deviates considerably for the Stage 3 cold climate experiments, with mismatches up to 11 °C for the mean annual air temperature and up to 15 °C for the winter temperature. However, in this reconstruction various factors linking climate and permafrost have not been taken into account. In particular a relatively thin snow cover and high climatic variability of the glacial climate could have influenced temperature limits for ice‐wedge growth. Based on modelling the 0 °C mean annual ground temperature proves to be an appropriate upper temperature limit. Using this limit, mismatches with the Stage 3 cold climate experiments have been reduced but still remain. We therefore assume that the Stage 3 ice wedges were generated during short (decadal time‐scale) intervals of extreme cold climate, below the mean temperatures indicated by the Stage 3 cold climate model simulations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
4.
5.
6.
7.
The Samborombon Bay wetland is located on the west margin of the Rio de la Plata estuary, in the Province of Buenos Aires, Argentina. This paper analyses the geological, geomorphologic, soil and vegetation characteristics of the southernmost sector of this wetland and their influence on surface water and groundwater. The study area presents three hydrologic units: coastal dunes, sand sheets and coastal plain. Coastal dunes and sand sheets are recharge zones of high permeability with well-drained, non-saline soils, and a few surface water flows. Changes in the water table are related to rainfall. Groundwater in coastal dunes is Ca–Mg–HCO3 to Na–HCO3, and of low salinity (590 mg/l). Groundwater in sand sheets is mainly Na–HCO3 with a salinity of about 1,020 mg/l. The coastal plain exhibits medium to low permeability sediments, with submerged saline soils poorly drained. Groundwater is Na–Cl with a mean salinity of 16,502 mg/l. A surface hydrological network develops in the coastal plain. Surface water levels near the shoreline are affected by tidal fluctuations; far from the shoreline water accumulates because of poor drainage. Both sectors have Na–Cl water, but the former is more saline. Human intervention and sea level rise may affect the wetland severely.  相似文献   
8.
9.
In July 2002, a combination of underway mapping and discrete profiles revealed significant along-shore variability in the concentrations of manganese and iron in the vicinity of Monterey Bay, California. Both metals had lower concentrations in surface waters south of Monterey Bay, where the shelf is about 2.5 km wide, than north of Monterey Bay, where the shelf is about 10 km wide. During non-upwelling conditions over the northern broad shelf, dissolvable iron concentrations measured underway in surface waters reached 3.5 nmol L−1 and dissolved manganese reached 25 nmol L−1. In contrast, during non-upwelling conditions over the southern narrow shelf, dissolvable iron concentrations in surface waters were less than 1 nmol L−1 and dissolved manganese concentrations were less than 5 nmol L−1. A pair of vertical profiles at 1000 m water depth collected during an upwelling event showed dissolved manganese concentrations of 10 decreasing to 2 nmol L−1, and dissolvable iron concentrations of 12–20 nmol L−1 in the upper 100 m in the north, compared to 3.5–2 nmol L−1 Mn and 0.6 nmol L−1 Fe in the upper 100 m in the south, suggesting the effect of shelf width influences the chemistry of waters beyond the shelf.These observations are consistent with current understanding of the mechanism of iron supply to coastal upwelling systems: Iron from shelf sediments, predominantly associated with particles greater than 20 μm, is brought to the surface during upwelling conditions. We hypothesize that manganese oxides are brought to the surface with upwelling and are then reduced to dissolved manganese, perhaps by photoreduction, following a lag after upwelling.Greater phytoplankton biomass, primary productivity, and nutrient drawdown were observed over the broad shelf, consistent with the greater supply of iron. Incubation experiments conducted 20 km offshore in both regions, during a period of wind relaxation, confirm the potential of these sites to become limited by iron. There was no additional growth response when copper, manganese or cobalt was added in addition to iron. The growth response of surface water incubated with bottom sediment (4 nmol L−1 dissolvable Fe) was slightly greater than in control incubations, but less than in the presence of 4 nmol L−1 dissolved iron. This may indicate that dissolvable iron is not as bioavailable as dissolved iron, although the influence of additional inhibitory elements in the sediment cannot be ruled out.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号