首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   1篇
  国内免费   2篇
大气科学   1篇
地球物理   3篇
地质学   27篇
海洋学   2篇
天文学   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2009年   4篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2001年   1篇
  2000年   2篇
  1997年   1篇
  1994年   2篇
  1992年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有36条查询结果,搜索用时 281 毫秒
1.
2.
In the Sandıklı (Afyon) region, western Taurides, the Late Proterozoic rocks of the Sandıklı basement complex are composed of low-grade meta-sedimentary rocks (Güvercinoluk Formation) intruded by felsic rocks (Kestel Cayı Porphyroid Suite, KCPS). The KCPS is a deformed and highly sheared, dome-shaped rhyolitic body with a granitic core. Quartz porphyry dikes intrude both the slightly metamorphic igneous and the sedimentary rocks of the basement complex. Both the quartz porphyries and rhyolites were converted into mylonites with relict igneous textures. Geochemical data show that these felsic igneous rocks are subalkaline and mainly granitic in composition with SiO2 >72 wt% and Al2O3 >11.5 wt%. The chondrite-normalized incompatible trace element patterns are characterized by distinct negative Rb, Nb, Sr, P, Ti, and Eu with enrichment in Th, U, La, Ce, Nd, Sm, and Zr. The REE patterns of the felsic rocks indicate a strong enrichment in LREE but display slightly flat HREE patterns. According to geochemical characteristics and petrogenetic modeling, extrusive and intrusive rocks of the KCPS were probably derived from an upper continental crustal source (partial melting of granites/felsic rocks) by 18–20% fractional melting plus 18–20% Rayleigh fractional crystallization, which seems to be the most effective igneous process during the crystallization of the KCPS. Single zircon age data from the granitoids and fossils from the disconformably overlying sedimentary successions indicate that the metamorphism and the igneous event in the Taurides are related to the Cadomian orogeny. Based on the geological, geochemical and petrogenetic correlation of the post-collisional granitoids it is further suggested that the Tauride belt in western central Turkey was in a similar tectonic setting to the Gondwanan terranes in North Africa (Younger Granitoids) and southern Europe (Spain, France, Bohemia, Brno Massifs) during the Late Cadomian period.  相似文献   
3.
4.
Blocks and tectonic slices within the Mersin Mélange (southern Turkey), which are of Northern Neotethyan origin (Izmir–Ankara–Erzincan Ocean (IAE)), were studied in detail by using radiolarian, conodont, and foraminiferal assemblages on six different stratigraphic sections with well‐preserved Permian succesions. The basal part of the Permian sequence, composed of alternating chert and mudstone with basic volcanics, is assigned to the late Asselian (Early Permian) based on radiolarians. The next basaltic interval in the sequence is dated as Kungurian. The highly alkaline basic volcanics in the sequence are extremely enriched, similar to kimberlitic/lamprophyric magmas generated at continental intraplate settings. Trace element systematics suggest that these lavas were generated in a continental margin involving a metasomatized subcontinental lithospheric mantle source (SCLM). The middle part of the Permian sequences, dated by benthic foraminifera and conodont assemblages, includes detrital limestones with chert interlayers and neptunian dykes of middle Wordian to earliest Wuchiapingian age. Higher in the sequence, detrital limestones are overlain by alternating chert and mudstone with intermittent microbrecciated beds of early Wuchiapingian to middle Changhsingian (Late Permian) age based on the radiolarians. A large negative shift at the base of the Lopingian at the upper part of section is correlated to negative shifts at the Guadalupian/Lopingian boundary associated with the end‐Guadalupian mass extinction event. All these findings indicate that a continental rift system associated with a possible mantle plume existed during the late Early to Late Permian period. This event was responsible for the rupturing of the northern Gondwanan margin related to the opening of the IAE Ocean. When the deep basinal features of the Early Permian volcano‐sedimentary sequence are considered, the proto IAE oceanic crust formed possibly before the end of the Permian. This, in turn, suggests that the opening of the IAE Ocean dates back to as early as the Permian.  相似文献   
5.
The polarization direction or 'sign’ of reflected converted P–S waves depends upon the angle of incidence of the incident P-wave. Sign reversal due to reversal of the angle of incidence is often encountered and is an impediment to P–S wave processing and imaging, because when P–S events or P-S migrated images with mixed signs are stacked, destructive interference occurs. We have created and demonstrated a means of correcting for this reversal. To do this, a P-wave angle of incidence is calculated for every point in the image space. This is done by calculating a P–S reflected waveform for every point, by extrapolating the reflected S-wavefield backwards from the receiver line, and then cross-correlating this waveform with the S-wave reflections observed at the receiver line. A multiplier, (sgn α) is assigned to each point in the image space, where α is the angle of incidence of the P-wave. The multiplier was applied to a set of prestack reverse time migration images derived from a cross-borehole physical elastic model data set. The improvement in the stacked image when the sign correction is applied is spectacular. The P-S image quality is comparable to, or better than, stacked migrated P-P images. The method appears to be applicable to all reflection modes and to all recording geometries.  相似文献   
6.
The last stages of the continental collision during the closure of the Neotethyan ocean in central Anatolia are characterized by post-collisional H- and A-type granitoids intruding both the metamorphic country rocks and allochthonous ophiolitic rocks of the central Anatolian crystalline complex. Available Rb–Sr and K–Ar whole-rock and mineral age data on the H- and A-type granitoids in central Anatolia are inconsistent. To better constrain the geological relevance and the timing of the change in the chemical character of magmatism in the wake of the Alpine orogeny in Anatolia, we re-evaluated the geochemical characteristics and dated titanite from representative H- (Baranadag quartz-monzonite: BR) and A-type (Çamsari quartz-syenite: CS) granitoids by the U–Pb method. BR is a high-K calc-alkaline intrusion with mafic microgranular enclaves and shows enrichment of LILE relative to HFSE. The alkaline CS displays higher SiO2, Na2O+K2O, Fe/Mg, Rb, Th and HFSE with corresponding depletion in CaO, MgO, Fe2O3tot, P2O5, Ba, Sr, and Ti. Chondrite-normalized REE patterns of the BR and CS samples have LREE-enriched and flat HREE patterns, whereas CS differs from BR by higher LREE enrichment and lower MREE and HREE contents. Mineralogical and geochemical characteristics suggest that BR and CS were not products of the same magma source. BR was derived from a subduction-modified depleted hybrid-source and CS had an enriched mantle source with significant crustal contribution. The U–Pb titanite ages of the H-type central Anatolian granitoids (BR) and the A-type granitoids (CS) are 74.0±2.8 and 74.1±0.7 Ma, respectively. The coeval evolution of post-collisional/calc-alkaline H- to A-type magmatism was possibly associated with source heterogeneity and variable involvement of continental materials during the evolution of these granitoids. These new age data constrain the timing of the onset of a post-collision extensional period following the Alpine thickening within the passive margin of the Tauride–Anatolide platform, which occurred before the opening of the latest Cretaceous central Anatolian basins.An erratum to this article can be found at  相似文献   
7.
8.
In the Sandıklı-Afyon area, the very low-grade metamorphic Sandıklı Basement Complex with clastic sediments and Late Neoproterozoic felsic igneous rocks are unconformably overlain by a cover succession with red continental clastic rocks, tholeiitic basalts and siliciclastic rocks with Early Cambrian trace fossils. Illite crystallinity studies reveal that both the basement and cover units were metamorphosed at high anchizonal to epizonal conditions ( 300 °C). Textural data together with the detailed evaluation of the PTb0 grid, however, indicate that this thermal event has multiple phases. The first tectonothermal event was realized at pressures of  4.2 kb on the basis of b0-data and resulted in development of blastomylonites. This is supported by the presence of dynamo-metamorphosed pebbles within the basal conglomerates of the Lower Paleozoic cover series. The second event is post-Ordovician–pre-Jurassic in age, occurred at lower pressures  3.2 kb and produced a weakly developed cleavage in the siliciclastic rocks of the cover. The mineralogical/textural data across the basement-cover boundary therefore indicate the removal of an entire metamorphic zone and thus a metamorphic hiatus.

These data suggest that the Taurides were affected by a Late Neoproterozoic event as part of the peri-Gondwana during the Cadomian orogeny.  相似文献   

9.
We have studied a few optical spectra of the symbiotic star CH Cygni obtained in the period January 1990-June 1991, which indicate that a mild increase of activity occurred between July and December 1990. This increase of activity is confirmed by the IUE observations made in the same period. In fact, in this period of time, we have observed an increase of intensity of all the emission lines both in the optical and ultraviolet ranges and of the continuous ultraviolet flux.Based on observations obtained at the Observatory of Haute Provence (OHP) and on observations by the International Ultraviolet Explorer (IUE) collected at the Villafranca Satellite Tracking Station.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号