首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   7篇
  2017年   1篇
  2014年   1篇
  2011年   1篇
  2006年   3篇
  1999年   1篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
Avicennia pollen grains have been discovered in marine facies from the Middle Miocene deltaic series of Châteauredon (southeastern France). Based on the local stratigraphy, an age between 15.8 and 16.5 Ma is proposed for these grains. The age and the transgressive context of the Avicennia bearing-levels are in agreement with the maximum extension of the mangrove known in the western Mediterranean during interval N8–NN4 pro parte, in relation with the Langhian highstand. This mangrove occurrence at 42°N latitude during Middle Miocene is a more northern witness of the mangrove sites known in Languedoc and Provence areas. It also implies a lower climatic gradient than today. To cite this article: J.-J. Châteauneuf et al., C. R. Geoscience 338 (2006).  相似文献   
2.
3.
4.
This study examines the lateral distribution of hydromorphy in the fine‐grained alluvial deposits of the Eocene Pondaung Formation, central Myanmar. Through detailed outcrop analysis and using a combined sedimentological and pedological approach, this study proposes a reconstruction of Pondaung overbank floodplain palaeoenvironments. The variations of hydromorphic features in the different overbank sub‐environments are then discussed and used to build a model of hydromorphic variability in alluvial deposits. Two main architectural associations with distinctive lithofacies and pedogenic features were identified, corresponding to different sub‐environments: heterolithic deposits and extensive mudstone successions. The heterolithic deposits display variegated fine‐grained lithofacies and contain poorly developed palaeosols with gley and vertic features, which are interpreted to reflect a seasonal wetlands landscape, developed in actively aggrading avulsion belts. Extensive mudstone successions with Vertisols that locally exhibit mukkara‐style pseudogley features are interpreted to represent a distal open‐forested environment. The palaeosols of both sub‐environments display dense local hydromorphic variations they are also characterized by a gradual shift from gley‐dominated to pseudogley‐dominated features with increasing distance from the avulsion belt. The clay‐dominated lithology of the floodplain parent material, which forms numerous subsurface permeability barriers, is shown to have acted as a fundamental control in limiting water‐table dynamics in coarse‐grained parts of the succession, thereby favouring hydromorphic variability. Palaeosol sequences of the Pondaung Formation contrast with the soil‐landscape associations described in other studies and provide an alternative model with which to account for the hydromorphic variability in poorly drained, alluvial soils. The model proposed as an outcome of this study demonstrates that hydromorphic variations can be dramatic in floodplains where permeability barriers are numerous. Further, the model stresses the importance of undertaking detailed lateral palaeosol analyses prior to making interpretations regarding hydromorphic variability.  相似文献   
5.
A process‐based model that simulates fluvial erosion in the River Somme Valley over the last million years is presented here. The model takes into account lithology and climatic influences and allows the simulating of undercapacity and overcapacity sediment transport behaviour. The model has been calibrated to a family of terraces within the River Somme Valley. When matched to this field data, simulation trials suggest that bedrock incision occurred principally from 120 to 60–40 kyr during the last climatic cycle and before the last glaciation. The impact of a progressive tectonic uplift (c. 60 m over c. 1 million years) on the River Somme has also been studied here. Extended over a longer period of time, the simulations suggest that 1 million years ago the profile of the River Somme had a lower slope gradient than today, with little relief throughout the Paris Basin.  相似文献   
6.
A thermokarst is a collapse feature resulting from the thawing of ice‐rich permafrost or of massive ice of various origins. Little attention has been paid to the sedimentary fabric resulting from this type of collapse, except for glaciotectonic features. In western Europe, two palaeo‐forms are commonly studied: lithalsas and ice‐wedge casts. Collapsed pingos are much rarer. Very few papers have compiled present‐day and fossil data. Here, field data collected from quarries in the eastern Paris Basin were analysed, providing useful records of thermokarst collapses in alluvial calcareous silts, sands, and gravels. These forms have a circular shape when viewed on satellite images. Permafrost is attested regionally by the recurrent occurrence of meter‐sized pattern grounds at the surface of the chalk and of ice‐wedge casts. Traces of segregation and reticulate ice are common. These features are primarily connected to a major interstadial, c. 150 ka BP, orbitally forced and commonly associated with a major glacial retreat. They occur both in drained and waterlogged situations, resulting in a specific pattern of deformation. They are controlled by the brittle and plastic behaviour of sediments and resemble passive glaciotectonism. Normal and reverse faults, with the offset decreasing downward, are common, and those with local shear are reported. Lithalsas, seasonal frost blisters, spring frost blisters and perhaps pingos seem to have formed. Most of these deformations correspond to thermokarst sinkholes bordered by gravitational collapse faults. The offset of these faults increases towards the surface, and the faults have been recurrently confused with neotectonism triggered by palaeo‐earthquakes. However, there are no faults beneath the observed deformation features, and the region lacks recorded seismic activity over the last century. Our data may be helpful in interpreting similar structures elsewhere.  相似文献   
7.
The alternation of carbonate deposits and paleosols compose the emerged part of the Bermuda archipelago. The pedological units present a complex and diversified mineralogy. Former studies demonstrated that the paleosols are not primarily a product of the unique dissolution of the surrounding carbonates, but contain a massive input of allochthonous non-carbonate detrital material. Researchers during more than the past three decades have attributed this flux of insoluble residues (IR) to Saharan dusts. We carried out systematic field and mineralogical analyses on the Quaternary paleosols from the Bermuda archipelago. Their mineralogical assemblage predominantly includes carbonates, clay minerals (kaolinite, chlorite and chlorite/vermiculite), phosphates, and aluminium and iron oxides/hydroxides. This assemblage is strikingly close to the mineralogy of the weathered volcanic substrate of Bermuda, but noticeably different from the mineralogy of Saharan dust. Moreover, we found volcanic lithoclasts in numerous paleosol profiles all over the archipelago and in all the recorded time intervals. We thus consider the volcanic seamount underlying Bermuda as the main source of non-carbonate minerals detected in the paleosols. This hypothesis further resolves the anomalous maturity of Bermudan paleosols compared to their southern counterparts in the Bahamas and Barbados.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号