首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   0篇
大气科学   25篇
地球物理   12篇
地质学   22篇
海洋学   6篇
天文学   1篇
自然地理   10篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   1篇
  1966年   1篇
  1942年   1篇
  1937年   1篇
排序方式: 共有76条查询结果,搜索用时 15 毫秒
1.
2.
We evaluate the capacity of a regional climate model to represent observed extreme temperature and precipitation events and also examine the impact of increased resolution, in an effort to identify added value in this respect. Two climate simulations of western Canada (WCan) were conducted with the Canadian Regional Climate Model (version 4) at 15 (CRCM15) and 45?km (CRCM45) horizontal resolution driven at the lateral boundaries by data from the European Centre for Medium-range Weather Forecasts (ECMWF) 40-year Reanalysis (ERA-40) for the period 1973–1995. The simulations were evaluated using the spline-interpolated dataset ANUSPLIN, a daily observational gridded surface temperature and precipitation product with a nominal resolution of approximately 10?km. We examine a range of climate extremes, comprising the 10th and 90th percentiles of daily maximum (TX) and minimum (TN) temperatures, the 90th percentile of daily precipitation (PR90), and the 27 core Climate Daily Extremes (CLIMDEX) indices.

Both simulations exhibit cold biases compared with observations over WCan, with the bias exacerbated at higher resolution, suggesting little added value for temperature overall. There are instances, however, of regional improvement in the spatial pattern of temperature extremes at the higher resolution of CRCM15 (e.g., the CLIMDEX index for the annual number of days when TX?>?25°C). The high-resolution simulations also reveal similarly localized features in precipitation (e.g., rain shadows) that are not resolved at the 45?km resolution. With regard to precipitation extremes, although both simulations generally display wet biases, CRCM15 features a reduced bias in PR90 in all seasons except winter. This improvement occurs despite the fact that spatial and interannual variability of PR90 in CRCM15 is significantly overestimated relative to both CRCM45 and ANUSPLIN. We posit that these characteristics are the result of demonstrable differences between corresponding topographical datasets used in the gridded observations and CRCM, the resulting errors propagated to physical variables tied to elevation and the beneficial effect of subsequent spatial averaging. Because topographical input is often discordant between simulations and gridded observations, it is argued that a limited form of spatial averaging may contribute added value beyond that which has already been noted in previous studies with respect to small-scale climate variability.  相似文献   
3.
Summary The relationship between clouds and the surface radiative fluxes over the Arctic Ocean are explored by conducting a series of modelling experiments using a one-dimensional thermodynamic sea ice model. The sensitivity of radiative flux to perturbations in cloud fraction and cloud optical depth are determined. These experiments illustrate the substantial effect that clouds have on the state of the sea ice and on the surface radiative fluxes. The effect of clouds on the net flux of radiation at the surface is very complex over the Arctic Ocean particularly due to the presence of the underlying sea ice. Owing to changes in surface albedo and temperature associated with changing cloud properties, there is a strong non-linearity between cloud properties and surface radiative fluxes. The model results are evaluated in three different contexts: 1) the sensitivity of the arctic surface radiation balance to uncertainties in cloud properties; 2) the impact of interannual variability in cloud characteristics on surface radiation fluxes and sea ice surface characteristics; and 3) the impact of climate change and the resulting changes in cloud properties on the surface radiation fluxes and sea ice characteristics.With 11 Figures  相似文献   
4.
5.
This research assesses the morphological consequences of recent (post‐‘Little Ice Age’) paraglacial reworking of valley‐side sediment mantles in the European Alps. It aims to identify the extent and conditioning factors of slope adjustment at sites in the Swiss Alps, model the temporal pattern, and assess the rates of sediment reworking involved. Gully systems have cut into steep, high‐level lateral moraines, and debris cones have accumulated downslope. Debris flow is the dominant agent of sediment transfer. Factors controlling the extent of this activity include moraine slope gradient, relief and moisture availability. Gullies appear to have reached their maximum dimensions within ca. 50 yr of deglaciation, after which gully relief is reduced by removal of inter‐gully slopes and gully infilling (within 80–140 yr). On the most recently deglaciated terrain, minimum erosion rates average ca. 95 mm yr?1 since gully initiation, greatly exceeding ‘normal’ erosion rates in other environments. Mean annual accumulation of a single debris cone since ice retreat was calculated to be ca. 30 mm yr?1. Implications of these findings are applied to patterns of paraglacial sediment‐mantled slope adjustment, conceptualising paraglacial landscape response in terms of a sediment release exhaustion model, and paraglacial landform succession. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
6.
Simulations of eight different regional climate models (RCMs) have been performed for the period September 1997–September 1998, which coincides with the Surface Heat Budget of the Arctic Ocean (SHEBA) project period. Each of the models employed approximately the same domain covering the western Arctic, the same horizontal resolution of 50 km, and the same boundary forcing. The models differ in their vertical resolution as well as in the treatments of dynamics and physical parameterizations. Both the common features and differences of the simulated spatiotemporal patterns of geopotential, temperature, cloud cover, and long-/shortwave downward radiation between the individual model simulations are investigated. With this work, we quantify the scatter among the models and therefore the magnitude of disagreement and unreliability of current Arctic RCM simulations. Even with the relatively constrained experimental design we notice a considerable scatter among the different RCMs. We found the largest across-model scatter in the 2 m temperature over land, in the surface radiation fluxes, and in the cloud cover which implies a reduced confidence level for these variables. An erratum to this article can be found at  相似文献   
7.
The seasonal prediction skill for the Northern Hemisphere winter is assessed using retrospective predictions (1982–2010) from the ECMWF System 4 (Sys4) and National Center for Environmental Prediction (NCEP) CFS version 2 (CFSv2) coupled atmosphere–ocean seasonal climate prediction systems. Sys4 shows a cold bias in the equatorial Pacific but a warm bias is found in the North Pacific and part of the North Atlantic. The CFSv2 has strong warm bias from the cold tongue region of the eastern Pacific to the equatorial central Pacific and cold bias in broad areas over the North Pacific and the North Atlantic. A cold bias in the Southern Hemisphere is common in both reforecasts. In addition, excessive precipitation is found in the equatorial Pacific, the equatorial Indian Ocean and the western Pacific in Sys4, and in the South Pacific, the southern Indian Ocean and the western Pacific in CFSv2. A dry bias is found for both modeling systems over South America and northern Australia. The mean prediction skill of 2 meter temperature (2mT) and precipitation anomalies are greater over the tropics than the extra-tropics and also greater over ocean than land. The prediction skill of tropical 2mT and precipitation is greater in strong El Nino Southern Oscillation (ENSO) winters than in weak ENSO winters. Both models predict the year-to-year ENSO variation quite accurately, although sea surface temperature trend bias in CFSv2 over the tropical Pacific results in lower prediction skill for the CFSv2 relative to the Sys4. Both models capture the main ENSO teleconnection pattern of strong anomalies over the tropics, the North Pacific and the North America. However, both models have difficulty in forecasting the year-to-year winter temperature variability over the US and northern Europe.  相似文献   
8.
The isoprenoid alkanes present in a seep oil from Costa Rica have been examined using gas chromatography and mass spectrometry. In addition to the predominance of the C16 and C18-C20 regular isoprenoid alkanes, the C21 and C23-C25 regular isoprenoid alkanes were identified. The C26, C28 and C30 regular isoprenoid alkanes were tentatively identified. No evidence for the regular C17, C22 or C27 isoprenoid alkanes was found. The compounds 3,7,11- trimethyltetradecane and 3,7,11-trimethylhexadecane were tentatively identified. It is suggested that a higher regular isoprenoid structure (or structures) is required in addition to phytol to account for the distribution of isoprenoid alkanes.  相似文献   
9.
The effects on the convective boundary layer (CBL) of shading due to shallow cumulus clouds are investigated. The main question is to see whether clouds are able to produce secondary circulations by shading of the surface (dynamic heterogeneities) and how these dynamic heterogeneities interact with static heterogeneities in terms of the production of secondary circulations. Also the effects of cloud shadows on cloud-field characteristics are analyzed. The effects are studied using large-eddy simulations of a cloud-topped CBL with an idealized surface. Over a homogeneous surface, shadows trigger secondary circulations with different strengths depending on the solar zenith angle \(\vartheta \), with large \(\vartheta \) favouring the development of secondary circulations. Over a static heterogeneous surface with a simple striped pattern, the strength of secondary circulations is effectively reduced by dynamic heterogeneities at small \(\vartheta \). At large \(\vartheta \), however, the effect on secondary circulations depends on the orientation of the striped static heterogeneities to the shadow-casting direction of the clouds. The influence of shadows is only small if they are cast perpendicular to the striped heterogeneity, but if stripes and the shadow-casting direction are parallel, secondary circulations are reduced in strength also for large \(\vartheta \). Shadow effects on the cloud-field characteristics vary with \(\vartheta \) as well. The results show that small \(\vartheta \) favours the development of small clouds with a reduced lifetime while large \(\vartheta \) promotes the development of larger clouds with an extended lifetime compared to non-shading clouds.  相似文献   
10.
This paper argues that the IPCC has oversimplified the issue of uncertainty in its Assessment Reports, which can lead to misleading overconfidence. A concerted effort by the IPCC is needed to identify better ways of framing the climate change problem, explore and characterize uncertainty, reason about uncertainty in the context of evidence-based logical hierarchies, and eliminate bias from the consensus building process itself.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号