首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
地球物理   1篇
地质学   5篇
海洋学   3篇
自然地理   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  1996年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有11条查询结果,搜索用时 250 毫秒
1.
Time series of the chlorophyll-a concentration (Chl-a) observed by ocean color satellites from 1998 to 2009 were used to assess eutrophication in Toyama Bay, the Sea of Japan. An overall mean of Chl-a during the 12-year period was used to divide the study area into “high” or “low” Chl-a areas based on a reference condition of 5 mg m?3. The annual maximum monthly mean Chl-a trend was estimated pixel-wise and its significance examined by the Sen slope test at a 90 % confidence level. By combining the level and trend of remotely sensed Chl-a, Toyama Bay was then classified into six eutrophication states: high-increasing, high-no trend, high-decreasing, low-increasing, low-no trend and low-increasing. Our study indicates that the combined use of both the level and trend of remotely sensed Chl-a can be an efficient method to preliminarily assess eutrophication of coastal waters after a quality screening process with level 2 flags and validation with in situ Chl-a data.  相似文献   
2.
3.
Antarctic climate changes influence environmental changes at both regional and local scales. Here we report Holocene paleolimnological changes in lake sediment core Sk4C-02 (length 378.0 cm) from Lake Skallen Oike in the Soya Kaigan region of East Antarctica inferred from analyses of sedimentary facies, a range of organic components, isotope ratios of organic carbon and nitrogen, and carbon-14 dating by Tandetron accelerator mass spectrometry. The sediment core was composed of clayish mud (378.0–152.5 cm) overlain by organic sediments (152.5 cm-surface). The age of the surface and the core bottom were 150 (AD1950-1640) and ca. 7,030 ± 73 calibrated years before present (cal BP), respectively, and the mean sedimentation rate was estimated to be 0.55 mm/year. Multi-proxy analyses revealed that the principal environmental change in the core is a transition from marine to lacustrine environments which occurred at a depth of 152.5 cm (ca. 3,590 cal BP). This was caused by relative sea level change brought about by ongoing retreat of glaciers during the mid-Holocene warming of Antarctica, and ongoing isostatic uplift which outpaced changes in global (eustatic) sea level. The mean isostatic uplift rate was calculated to be 2.8 mm/year. The coastal marine period (378.0–152.5 cm, ca. 7,030–3,590 cal BP) was characterized by low biological production with the predominance of diatoms. During the transition period from marine to freshwater conditions (152.5-approximately 135 cm, ca. 3,590–3,290 cal BP) the lake was stratified with marine water overlain by freshwater, with a chemocline and an anoxic (sulfidic) layer in the bottom of the photic zone. Green sulfur bacteria and Cryptophyta were the major photosynthetic organisms. The Cryptophyta appeared to be tolerant of the moderate salinity and stratified water conditions. The lacustrine period (approximately 135 cm-surface, ca. 3,290 cal BP-present) was characterized by high biological production by green algae (e.g. Comarium clepsydra and Oedegonium spp.) with some contributions from cyanobacteria and diatoms. Biological production during this period was 8.7 times higher than during the coastal marine period.  相似文献   
4.
3-Hydroxy acids were detected in pure cultured microalgae: Chlorophyta—Chlamydomonas reinhardtii and Chlorella pyrenoidosa and Rhodophyta—Cyanidium caldarium (two strains), and cyanobacteria (Cyanophyta)—Anacystis nidulans, Phormidium foveolarum, Anabaena variabilis and Oscillatoria sp. Normal and branched (iso and anteiso) 3-hydroxy acids in the ranges of C8-C26 were found in all the samples studied at concentrations ranging from 0.036 to 2.3 and 0.000 to 0.12 mg g?1 of dry sample, respectively. The major constituents were generally even-carbon numbered normal acids with carbon chain lengths below C20. Microalgae and cyanobacteria may be the important sources of 3-hydroxy acids in natural environments.  相似文献   
5.
Fine scale distribution of nitrous oxide in marine sediments   总被引:1,自引:0,他引:1  
Vertical profiles of nitrous oxide and other inorganic nitrogen compounds in the sediments in Tokyo Bay and its vicinity were measured using the whole core squeezing method. Within the bay area, vertical profiles of nitrous oxide in the interstitial waters showed one or two distinctive peaks around the depth of 2–4 cm, which corresponded to the peaks of nitrite and nitrate. In situ formation of nitrous oxide through nitrification was suggested in those sediments, which was possibly activated by the presence of benthic animals. On the other hand, at the deep sediment off Tokyo Bay the profiles of nitrous oxide, nitrite and nitrate gave a monotonous single peak, indicating less bioturbated condition. Denitrification or dissimilatory nitrate reduction might be important for the formation of nitrous oxide peaks in the latter type of sediment.  相似文献   
6.
Twin formation in hematite during dehydration was investigated using X-ray diffraction, electron diffraction, and high-resolution transmission electron microscopy (TEM). When synthetic goethite was heated at different temperatures between 100 and 800 °C, a phase transformation occurred at temperatures above 250 °C. The electron diffraction patterns showed that the single-crystalline goethite with a growth direction of [001]G was transformed into hematite with a growth direction of [100]H. Two non-equivalent structures emerged in hematite after dehydration, with twin boundaries at the interface between the two variants. As the temperature was increased, crystal growth occurred. At 800 °C, the majority of the twin boundaries disappeared; however, some hematite particles remained in the twinned variant. The electron diffraction patterns and high-resolution TEM observations indicated that the twin boundaries consisted of crystallographically equivalent prismatic (100) (010), and (1\(\bar{1}\)0) planes. According to the total energy calculations based on spin-polarized density functional theory, the twin boundary of prismatic (100) screw had small interfacial energy (0.24 J/m2). Owing to this low interfacial energy, the prismatic (100) screw interface remained after higher-temperature treatment at 800 °C.  相似文献   
7.
High-time resolution 14C dating of Lake Baikal sediment cores indicates negative and positive anomalies of calculated linear sedimentation rate (LSR; 1.1 and 35.6 cm/ka, respectively) during the period of climate transition from the last glacial to Holocene. The timing of the Lake Baikal apparent LSR anomalies is consistent with that of the changes in the atmospheric radiocarbon concentration (Δ14C) during Younger Dryas rapid cooling event. 14C dating of lipids in the Lake Baikal surface sediments revealed that the sources of sedimentary lipids were different in each basin. In the Northern Basin of Lake Baikal, the 14C age of total lipids from the surface sediment (4.0 14C ka) was found to be older than that of TOC (1.6 14C ka). By contrast, the 14C age of total lipids in the Southern Basin was younger than that of the TOC by ca. 0.7–3.0 ka.In the Lake Hovsgol sediment cores, ages of the main lithologic boundaries during the last glacial–interglacial transition were estimated based on new 14C data sets. TOC concentration in the cores started to rapidly increase at 13.8 ± 0.3 14C ka at the base of the basinwide finely laminated layer deposited during Bølling/Allerød. The base of the layer diatomaceous mud corresponds to the end of Younger Dryas event (10.6 ± 0.1 14C ka).  相似文献   
8.
Past changes in phytoplankton assemblages in Lake Baikal over the last 4.5 Ma, both in population and composition, are inferred from the downcore profiles of the relatively stable chlorophyll derivatives steryl esters of pyropheophorbides a and b (steryl chlorine esters; SCEs) in the 0–200 m section of the BDP-98 drill core, supplemented by the data on biogenic silica (BSi) and total organic carbon (TOC) contents. SCEs-a and -b dominate among sedimentary chlorophyll derivatives in the BDP-98 sediments except for the upper few meters, indicating their high stability during diagenetic alteration of sediments. The depth (age) profiles of SCEs-a are consistent with BSi and TOC profiles and are interpreted as reflecting primary productivity of the lake in the past. Baikal proxies reveal close correlation with marine oxygen isotope records (MIS stratigraphy). These observations confirm that climate change in the northern hemisphere has been a primary factor controlling the total phytoplankton productivity in Lake Baikal during the last several million years.Among SCEs-a, C30 (dinostanol)-SCE-a, a marker of dinoflagellates was identified by GC–MS analysis. SCE-b, a marker of green algae, was identified by its UV–vis spectrum. The ratio of C30-SCE-a to total SCEs-a (TSCEs-a) was higher during 4.5–4.2 and 1.7–1.3 Ma, suggesting that dinoflagellates proliferated preferentially in those periods. The early Pleistocene maximum of this ratio corresponds to the broad minimum of diatom abundance previously suggested to have recorded a prolonged regional cooling. An abrupt increase in the SCE-b/TSCEs-a ratio was observed at 2.5–2.6 Ma, indicating that green algae containing chlorophyll b have proliferated in Lake Baikal during this period. This interval has also been suggested to contain evidence for a significant regional cooling based on minima of diatom abundance and BSi in sediments. The depth profile of C27Δ5 (cholesterol)-SCE-a relative to TSCEs-a showed a trend similar to that of BSi, suggesting that C27Δ5-SCE-a/TSCEs-a ratio is a potential marker of diatoms in Lake Baikal.Certain mismatches between the Lake Baikal profiles of biological indicators and the marine oxygen isotope records, as well as the slight temporal offsets between different Lake Baikal biological marker signals suggest that the regional component of climatic and/or lacustrine environmental changes also have played a role in determining the composition of the Lake Baikal Plio-Pleistocene phytoplankton assemblage.  相似文献   
9.
In this study, a numerical model of 7-day forecast of sea ice produced by the Japan Meteorological Agency was improved by the following approaches. First, a new ice dynamic model was introduced: the distributed mass/discrete floe model. The model takes account of discrete characteristics of ice floes and well simulates the ice edge location at low computational cost. Secondly, the grid size was reduced to 5 × 5 km for the future high resolution forecasts. Next, the sea surface current data was examined because it significantly influences sea ice movement. We applied two new datasets of HINO and Okhotsk Ocean General Circulation Model (Okhotsk OGCM), which are estimated by numerical simulations, for the 7-day forecast of sea ice. Ice southward speed in January and the whorl formations in February and March were well reproduced with Okhotsk OGCM datasets. Finally, the ocean heat flux at the ice-ocean interface was refined. As a result, we achieved an ice edge error reduction from 30.8 km to 23.5 km.  相似文献   
10.
Geochemistry of a sediment core from Lake Hovsgol, northwest Mongolia provides a continuous, 27-kyr history of the response of the lake and the surrounding catchment to climate change. Principle component (PC) analysis of 19 major and trace elements, total inorganic carbon (TIC), and total organic carbon (TOC) in the bulk sediment samples revealed that the 21 chemical components can be grouped into four assemblages—group-1: Na, Mg, Ca, Sr, and TIC, hosted in carbonate minerals (calcite, dolomite, and magnesian calcite); group-2: Ni, Cu, and Zn, recognized as biophilic trace metals, and TOC; group-3: Al, K, Ti, V, Fe, Rb, Cs, Ba, and Pb, composed of rock-forming minerals; and group-4: Cr, Mn, and As, sensitive to the redox condition of the sediment. The four element assemblages originated from three relevant processes. Group-1 and group-2 components are authigenic products and comprise the end member on the PC-1 score, whose variation reflects changes in the water volume, i.e. the balance between precipitation and evaporation (P/E). Group-3 components from detrital materials of the catchment contribute to the PC-2 score, whose variability indicates erosion/weathering intensity in the drainage basin, which might be controlled by the amount of vegetation cover associated with moisture change. The group-4 components of redox-sensitive elements contribute to the PC-3 score and are not an end member because of their small amount. The first two PC scores suggest a sequential record of paleo-moisture evolution in central Asia. The P/E balance in the Lake Hovsgol region, inferred from the PC-1 score, gradually increased during the glacial/interglacial transition. This resembles climate change of the North Atlantic region on the glacial–interglacial scale, but does not reflect the abrupt climate shifts such as the warm Bølling-Allerød and the cold Younger Dryas of the North Atlantic on the millennial scale. A periodic variation of ~8.7 kyr was observed in the PC-2 score profile of detrital input to Lake Hovsgol over the last glacial and Holocene. The decrease in detrital input coincided with the copious supply of moisture from the Asian monsoon regime and the North Atlantic westerly winds to the Baikal drainage basin, which includes Lake Hovsgol. Our geochemical records from Lake Hovsgol demonstrate that the climate system of interior continental Asia was strongly influenced by change on both Milankovitch and sub-Milankovitch scales.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号