首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   2篇
大气科学   1篇
地球物理   1篇
地质学   4篇
海洋学   1篇
自然地理   1篇
  2017年   1篇
  2016年   1篇
  2012年   2篇
  2010年   2篇
  2003年   1篇
  1997年   1篇
排序方式: 共有8条查询结果,搜索用时 14 毫秒
1
1.
Rising northern hemispheric mean air temperatures reduce the amount of winter lake ice. These changes in lake ice cover must be understood in terms of resulting effects on lake ecosystems. Accurate predictions of lake ice phenology are essential to assess resulting impact. We applied the one-dimensional physical lake model FLake to analyse past variability in ice cover timing, intensity and duration of Berlin-Brandenburg lakes. The observed ice phenology in two lakes in the period 1961–2007 was reconstructed by FLake reasonably well and with higher accuracy than by state-of-the-art linear regression models. Additional modelling results of FLake for 38 Berlin-Brandenburg lakes, observed in the winter of 2008/09, were quite satisfactory and adequately reproduced the effects of varying lake morphology and trophic state. Observations and model results showed that deeper and clearer lakes had more ice-free winters, later ice cover freezing and earlier ice cover thawing dates, resulting in shorter ice-covered periods and fewer ice-covered days than shallow and less clear lakes. The 1947–2007 model hindcasts were implemented using FLake for eight Berlin-Brandenburg lakes without ice phenology observations. Results demonstrated past trends of later ice start and earlier ice end, shorter ice cover duration and an increase in ice-free winters.  相似文献   
2.
<正>Parageotrupes incanus gen.et sp.nov.(Scarabaeoidea:Geotrupidae:Geotrupinae)is described and illustrated from the Yixian Formation of western Liaoning province,China.  相似文献   
3.
Parageotrupes incanus gen. et sp. nov. (Scarabaeoidea: Geotrupidae: Geotrupinae) is described and illustrated from the Yixian Formation of western Liaoning province, China.  相似文献   
4.
The east margin of the Siberian craton is a typical passive margin with a thick succession of sedimentary rocks ranging in age from Mesoproterozoic to Tertiary. Several zones with distinct structural styles are recognized and reflect an eastward-migrating depocenter. Mesozoic orogeny was preceded by several Mesoproterozoic to Paleozoic tectonic events. In the South Verkhoyansk, the most intense pre-Mesozoic event, 1000–950 Ma rifting, affected the margin of the Siberian craton and formed half-graben basins, bounded by listric normal faults. Neoproterozoic compressional structures occurred locally, whereas extensional structures, related to latest Neoproterozoic–early Paleozoic rifting events, have yet to be identified. Devonian rifting is recognized throughout the eastern margin of the Siberian craton and is represented by numerous normal faults and local half-graben basins.Estimated shortening associated with Mesozoic compression shows that the inner parts of ancient rifts are now hidden beneath late Paleozoic–Mesozoic siliciclastics of the Verkhoyansk Complex and that only the outer parts are exposed in frontal ranges of the Verkhoyansk thrust-and-fold belt. Mesoproterozoic to Paleozoic structures had various impacts on the Mesozoic compressional structures. Rifting at 1000–950 Ma formed extensional detachment and normal faults that were reactivated as thrusts characteristic of the Verkhoyansk foreland. Younger Neoproterozoic compressional structures do not display any evidence for Mesozoic reactivation. Several initially east-dipping Late Devonian normal faults were passively rotated during Mesozoic orogenesis and are now recognized as west-dipping thrusts, but without significant reactivation displacement along fault surfaces.  相似文献   
5.
6.
Monitoring during three meteorologically different spring seasons in 2012, 2013, and 2014 revealed that temperature increase in spring, which influences spring lake mixing duration, markedly affected nutrient availability and diatom deposition in a sediment trap close to the bottom of deep Tiefer See, NE Germany. Deposition of Stephanodiscus taxa and small Cyclotella taxa was much higher after late ice out and a deep, short lake mixing period in spring 2013, compared to that after gradual warming and lengthy lake mixing periods in spring 2012 and 2014, when only brief or marginal ice cover occurred. Availability of dissolved Si and P was 33 and 20 % higher, respectively, in 2013 compared to 2014. The observed relation between high (low) diatom deposition and short (lengthy) mixing duration in spring was applied to varved sediments deposited between AD 1924 and 2008. Low detrital Si content in trapped material and a sediment core enabled use of µXRF-counts of Si as a proxy for diatom silica. The spring mixing duration for 1951–2008 was derived from FLake-model calculations. The spring warming duration related to lake mixing was approximated from air temperatures for 1924–2008 using the dates when daily mean air temperature exceeded 5 °C (start) and 10 °C (end). Diatom silica deposition showed a significant (p < 0.0001) inverse linear relationship with the modeled spring mixing duration (R2 = 0.36) and the spring warming duration (R2 = 0.28). In both cases, the relationship is strengthened when data from the period of low diatom production (1987–2005) is excluded (R2 = 0.59 and R2 = 0.35). Part of this low diatom production is related to external nutrient supply that favored growth of cyanobacteria at the expense of diatoms. This approach shows that diatom Si deposition was strongly influenced by the availability of light and nutrients, related to the duration of lake mixing and warming in spring, during most of the studied period. The remaining unexplained variability, however, indicates that additional factors influence Si deposition. Further tests in other deep, temperate lakes are necessary to verify if this relation is a common feature and consequently, if diatom Si can be used as a proxy for spring mixing duration in such lakes.  相似文献   
7.
8.
The morphotectonic setting of the East Pacific Rise (EPR) between21°12 and 22°40 S and its recent and past hydrothermalactivity were the focus of the Russian R/V Geolog Fersmans expeditionin 1987–1988.The EPR axial zone in the study area is comprised of three segmentsseparated by overlapping spreading centers (OSCs) near 21°44 and22°08 S. The northern segment is the shallowest of three and hasa distinct massive axial ridge, trapeziodal in cross-section, toppedby a very wide flat summit surface and cut by a well-developedcentral graben. These features testify to intense magmatism and to avoluminous crustal magmatic chamber underlying the whole segment.Fine-scale segmentation is most clearly revealed in the structure ofthe central graben within which several 4th-order segments can bedistinguished. This scale of segmentation is also reflected on flanks of theaxis by variations in the character and intensity of faulting.According to structural and petrologic data, the magmatism is mostintense in the central part of the segment which is probably locateddirectly over a magmatic diapir supplying the melt to the whole segment.Magma migration at the subcrustal level from the center towards the ends ofthe segment with discrete injection into the crustal magmatic chamber ispresumed.The central segment is broken into two morphologically distinct partsseparated by a deval. In the subsided northern part, the wide summit of theaxial ridge is cut by a well-developed, intensely fractured axialgraben. In the southern part, the axial ridge is relatively elevated, butnarrow with an ephemeral graben along its crest. The character and intensityof faulting on the axial flanks are also considerably different in thenorthern and southern parts of the segment. Thus, the magmatic supply tothese two parts is thought to originate from two different sources. If so,then at present the magma chamber underlying the southern part of thesegment is probably at the stage of replenishment, while in the north it isat the stage of deep cooling.The southern segment is structurally similar to the central one. Howeverthere is considerably less intensive magmatic activity in this region,especially south of 22°30 S where the axial ridge is narrow, andtriangular in cross-section.Both OSCs studied are marked by abrupt narrowing and sharp subsidence ofthe tips of axial ridges within the northern limbs. The southern OSC limbsare morphologically similar to normal sections of axial ridges. In bothcases the flanks are structurally and morphologically disrupted adjacent tothe OSCs and oblique structures can be traced far southward of the OSCflanks. Due to the spatial position of oblique structures on the the flanksit is presumed that the OSC near 22°07 S is migrating northward.The 21°44 S OSC zone has apparently undergone small spatialoscillations. In spite of the small amplitude of lateral displacement, thiszone is marked by prominent bathymetric anomalies.Numerous massive sulfide deposits were discovered atop the axial ridgealong the entire length of the uplifted and hydrothermally active northernsegment. Ore metal concentrations in near-bottom waters are maximumover the southern part of the northern segment, while maximum concentrationsof the same metals in surficial sediments are confined to the central partof the same segment. We surmise that there has been a recentalong-axis shift of the zone of maximum hydrothermal activity fromthe middle of the segment to its present position in the southern part ofthe segment. Considering sedimentation rates, the age of this shift can beapproximately estimated to be 5 to 10 thousand years before the present.The relatively Mg-enriched basalts of the middle part of thenorthern segment represent a tike of a more primitive pattern, while therelatively Fe-rich rocks of its southern part probably reflect alarge degree of fractionation at shallow crustal levels. Considering thistrend, in addition to morphotectonic data we presume that subaxial magmaflow from the middle to the southern part of the segment is responsible forthe along-axis shift of hydrothermal activity.In the central segment of the study area, massive sulfides have only beendiscovered south of the 21°55 S deval, where the axial ridgeshoals and where the existence of a subjacent magma chamber is presumed.The very weak manifestations of recent volcanism within the southernsegment explain the absence of hydrothermal activity and sulfide depositswithin this segment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号