首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   0篇
大气科学   7篇
地球物理   13篇
地质学   31篇
海洋学   9篇
天文学   9篇
自然地理   8篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2013年   2篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   5篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   4篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有77条查询结果,搜索用时 15 毫秒
1.
2.
3.
Moraine chronology is combined with digital topography to model deglacial rates of paleoglacier volumes in both the Huancané Valley on the west side of the Quelccaya Ice Cap and the Upismayo Valley on the northwest side of the Cordillera Vilcanota. The fastest rates of deglaciation (39×10−5 to 114×10−5 km3 yr−1 and 112×10−5 to 247×10−5 km3 yr−1 for each valley, respectively) were calculated for the most recent paleoglaciers, corresponding to the last few centuries. These results are consistent with observations in the Venezuelan Andes showing high rates of deglaciation since the Little Ice Age. These rates also fall within the range of 20th century rates of deglaciation measured on the Quelccaya Ice Cap (29×10−5 to 220×10−5 km3 yr−1, Brecher and Thompson, 1993; Thompson, 2000). These results imply that rates of deglaciation may fluctuate significantly over time and that high rates of deglaciation may not be exclusive to the late 20th century. Equilibrium line altitude (ELA) depressions for the ice volumes of the last glaciation modeled here were computed as 230 m for the Quelccaya Ice Cap and 170 m for the Cordillera Vilcanota. Maximum ELA depressions are lower than previously published: <500 m for the Cordillera Vilcanota and <400 m for the Quelccaya Ice Cap. These lower values could imply a topographic control over paleoglacier extent.  相似文献   
4.
In this study, we employ wavelength‐dispersive X‐ray fluorescence (WDXRF) to characterize construction materials from Formative civic architecture (1000 B.C.E.–C.E. 400), ethnographic mudbricks, and off‐site controls from the Taraco Peninsula, Bolivia. The preparation of earthen construction materials for civic buildings can shed light on aspects of community development such as labor organization, resource management, and architectural technologies. We apply geochemical results to reconstructing how public buildings were made as communities moved toward socio‐political complexity in this region. However, there are few geochemical studies in the Andes, and little prior scientific analysis of earthen architecture. We therefore tested the efficacy of WDXRF for this region, and developed control materials. Our archaeological samples were selected from two Formative villages, Chiripa and Kala Uyuni. In this study, we performed WDXRF analyses on 63 archaeological and control samples including archaeological floors, walling, plasters, and mortars, as well as contemporary ethnographic walling and topsoils. Elemental signatures for 28 elements clearly distinguished the archaeological flooring, walling, plaster, and mortars from ethnographic and off‐site controls. More subtle variations were detected that distinguish study sites and the different material types. Laboratory‐calibrated multi‐element XRF effectively supports efforts to reconstruct the pathways to social complexity in the Titicaca Basin.  相似文献   
5.
Natural Hazards - Socially vulnerable communities experience disproportionately negative outcomes following natural disasters and underscoring a need for well-validated measures to identify those...  相似文献   
6.
7.
Summary A mathematical programming model for scheduling open pit mining was developed and validated using data from a surface mining operation. A two-phase solution procedure was used involving repeated evaluations of an integer scheduling model and a simple transportation model.  相似文献   
8.
Cloud detection and analysis: A review of recent progress   总被引:1,自引:0,他引:1  
The major types of cloud retrieval algorithms are reviewed with special emphasis being placed upon recent (i.e., post 1981/1982) developments and novel techniques. Satellite-based retrieval algorithms can be grouped into three classes: threshold methods, statistical procedures, and radiative transfer techniques, although each algorithm depends upon implicit, if not overt, inversion of the radiative transfer equation. The fourth type of retrieval differs very considerably from the satellite-based techniques as it depends upon surface-based measurements which are generally, but not always, human rather than computer based. There is a tendency to assume that surface-based observations, especially of total cloud amount, are “correct” but that they may differ from satellite-based retrievals because of the differences in viewing geometry. Actually the literature reveals surprisingly few intercomparison studies. None of the satellite-based techniques have yet been well-validated in a variety of situations, while surface-based observations are made in all terrain and climate regimes. Overall there seems to be good reason to believe that surface-based observations of cloud amount and especially of low cloud amount, character, and base height, can add significantly to satellite-based global nephanalyses now operational or currently being planned.  相似文献   
9.
10.
The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM) anisotropic Ohm’s law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD) simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances) appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential , the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute by solving the equation that is the IM Ohm’s law boundary condition. Then is mapped out to R=R2, where it is used to update the electric field and the component of velocity perpendicular to B. The updated electric field and perpendicular velocity serve as new boundary conditions for the MHD simulation which is then used to compute a new field-aligned current density. This process is iterated at each time step. The required Hall and Pedersen conductances may be determined by any method of choice, and may be specified anew at each time step. In this sense the coupling between the ionosphere and magnetosphere may be taken into account in a self-consistent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号