首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   0篇
  国内免费   1篇
大气科学   5篇
地球物理   25篇
地质学   44篇
海洋学   34篇
天文学   16篇
自然地理   8篇
  2022年   4篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2013年   7篇
  2012年   7篇
  2011年   5篇
  2010年   11篇
  2009年   17篇
  2008年   7篇
  2007年   9篇
  2006年   4篇
  2005年   8篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有132条查询结果,搜索用时 84 毫秒
1.
The undulating, warped, and densely fractured surfaces of highland regions east of Valles Marineris (located north of the eastern Aureum Chaos, east of the Hydraotes Chaos, and south of the Hydaspis Chaos) resulted from extensional surface warping related to ground subsidence, caused when pressurized water confined in subterranean caverns was released to the surface. Water emanations formed crater lakes and resulted in channeling episodes involved in the excavation of Ares, Tiu, and Simud Valles of the eastern part of the circum-Chryse outflow channel system. Progressive surface subsidence and associated reduction of the subsurface cavernous volume, and/or episodes of magmatic-driven activity, led to increases of the hydrostatic pressure, resulting in reactivation of both catastrophic and non-catastrophic outflow activity. Ancient cratered highland and basin materials that underwent large-scale subsidence grade into densely fractured terrains. Collapse of rock materials in these regions resulted in the formation of chaotic terrains, which occur in and near the headwaters of the eastern circum-Chryse outflow channels. The deepest chaotic terrain in the Hydaspis Chaos region resulted from the collapse of pre-existing outflow channel floors. The release of volatiles and related collapse may have included water emanations not necessarily linked to catastrophic outflow. Basal warming related to dike intrusions, thermokarst activity involving wet sediments and/or dissected ice-enriched country rock, permafrost exposed to the atmosphere by extensional tectonism and channel incision, and/or the injection of water into porous floor material, may have enhanced outflow channel floor instability and subsequent collapse. In addition to the possible genetic linkage to outflow channel development dating back to at least the Late Noachian, clear disruption of impact craters with pristine ejecta blankets and rims, as well as preservation of fine tectonic fabrics, suggest that plateau subsidence and chaos formation may have continued well into the Amazonian Period. The geologic and paleohydrologic histories presented here have important implications, as new mechanisms for outflow channel formation and other fluvial activity are described, and new reactivation mechanisms are proposed for the origin of chaotic terrain as contributors to flooding. Detailed geomorphic analysis indicates that subterranean caverns may have been exposed during chaos formation, and thus chaotic terrains mark prime locations for future geologic, hydrologic, and possible astrobiologic exploration.  相似文献   
2.
To evaluate the contribution of biogeochemical processes to the oceanic carbon cycle and to calculate the ratio of calcium carbonate to organic carbon downward export, we have incorporated biological and alkalinity pumps in the yoked high-latitude exchange/interior diffusion-advection (YOLDA) model. The biogeochemical processes are represented by four parameters. The values of the parameters are tuned so that the model can reproduce the observed phosphate and alkalinity distributions in each oceanic region. The sensitivity of the model to the biogeochemical parameters shows that biological production rates in the euphotic zone and decomposition depths of particulate matters significantly influence horizontal and vertical distributions of biogeochemical substances. The modeled vertical fluxes of particulate organic phosphorus and calcium carbonate are converted to vertical carbon fluxes by the biological pump and the alkalinity pump, respectively. The downward carbon flux from the surface layer to the deep layer in the entire region is estimated to be 3.36 PgC/yr, which consists of 2.93 PgC/yr from the biological pump and 0.43 PgC/yr from the alkalinity pump, which is consistent with previous studies. The modeled rain ratio is higher with depth and higher in the Pacific and Indian Oceans than in the Atlantic Ocean. The global rain ratio at the surface layer is calculated to be 0.14 to 0.15. This value lies between the lower and higher ends of the previous estimates, which range widely from 0.05 to 0.25. This study indicates that the rain ratio is unlikely to be higher than 0.15, at least in the surface waters.  相似文献   
3.
Two processes are generally explained as causes of temporal changes in the stoichiometric silicon/nitrogen (Si/N) ratios of sinking particles and of nutrient consumption in the surface water during the spring diatom bloom: (1) physiological changes of diatom under the stress of photosynthesis of diatom and (2) differences of regeneration between silicon and nitrogen. We investigated which process plays an important role in these changes using a one-dimensional ecosystem model that explicitly represents diatom and the other non-silicious phytoplankton. The model was applied to station A7 (41°30′ N, 145°30′ E) in the western North Pacific, where diatom regularly blooms in spring. Model simulations show that the Si/N ratios of the flux exported by the sinking particles at 100 m depth and of nutrient consumptions in the upper 100 m surface water have their maxima at the end of the spring diatom bloom, the values and timings of which are significantly different from each other. Analyses of the model results show that the differences of regeneration between silicon and nitrogen mainly cause the temporal changes of the Si/N ratios. On the other hand, the physiological changes of diatoms under stress can hardly cause these temporal changes, because the effect of the change in the diatom's uptake ratio of silicon to nitrogen is cancelled by that in its sinking rate.  相似文献   
4.
A model based on that of Kishi et al. (2001) has been extended to 15 compartments including silicon and carbon cycles. This model was applied to Station A7 off Hokkaido, Japan, in the Northwestern Pacific. The model successfully simulated the observations of: 1. a spring bloom of diatoms; 2. large seasonal variations of nitrate and silicate concentrations in the surface water; and 3. large inter-annual variations in chlorophyll-a. It also reproduced the observed features of the seasonal variations of carbon dioxide partial pressure (pCO2)—a peak in pCO2 in winter resulting from deep winter convection, a rapid decrease in pCO2 as a result of the spring bloom, and an almost constant pCO2 from summer through fall (when the effect of increasing temperature cancels the effect of biological production). A comparison of cases with and without silicate limitation shows that including silicate limitation in the model results in: 1. decreased production by diatoms during summer; and 2. a transition in the dominant phytoplankton species, from diatoms to other species that do not take up silicate. Both of these phenomena are observed at Station A7, and our results support the hypothesis that they are caused by silicate limitation of diatom growth. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
JGOFS has revealed the importance of marine biological activity to the global carbon cycle. Ecological models are valuable tools for improving our understanding of biogeochemical cycles. Through a series of workshops, the North Pacific Marine Science Organization (PICES) developed NEMURO (North Pacific Ecosystem Model Understanding Regional Oceanography) a model, specifically designed to simulate the lower trophic ecosystem in the North Pacific Ocean. Its ability to simulate vertical fluxes generated by biological activities has not yet been validated. Here compare NEMURO with several other lower trophic level models of the northern North Pacific. The different ecosystem models are each embedded in a common three-dimensional physical model, and the simulated vertical flux of POM and the biomass of phytoplankton are compared. The models compared are: (1) NEMURO, (2) the Kishi and Nakata Model (Kishi et al., 1981), (3) KKYS (Kawamiya et al., 1995, 2000a, 2000b), and (4) the Denman model (Denman and Peña, 2002). With simple NPZD models, it is difficult to describe the production of POM (Particulate Organic Matter) and hence the simulations of vertical flux are poor. However, if the parameters are properly defined, the primary production can be well reproduced, even though none of models we used here includes iron limitation effects. On the whole, NEMURO gave a satisfactory simulation of the vertical flux of POM in the northern North Pacific.  相似文献   
6.
Effects of the presence of a circumpolar region on buoyancy-driven circulation are investigated by using an idealized numerical ocean model. Comparison of circulation and meridional density (heat) transport is made between a closed ocean and an ocean with a cyclic gap near its southern boundary. The presence of the circumpolar region leads to disconnection of the meridional overturning across the circumpolar region. And the circumpolar eastward flow reaches the bottom of the ocean. It is essential for this that the pycnocline is deeper than the bottom of the gap. Since the amount of the mass transported northward must return southward at the levels deeper than the bottom of the cyclic gap, the weak stratification, hence weak vertical geostrophic shear, at the deeper levels leads to inactive communication across the circumpolar region. Meridional heat transport across the circumpolar region is made mainly by horizontal diffusion for the ocean with the cyclic gap, while the contribution of the advection is dominant for the closed ocean. Sensitivity of meridional heat transport to change in horizontal diffusivity is studied. The meridional heat transport for the ocean with the cyclic gap is more sensitive than for the closed ocean. The change in heat transport occurs not only in the circumpolar region but also in the rest of the ocean. It is suggested that subgrid scale phenomena, especially mesoscale eddies, in the circumpolar region controls the whole ocean to a great extent.  相似文献   
7.
The Wakamiko submarine crater is a small depression located in Kagoshima Bay, southwest Japan. Marine shallow‐water hydrothermal activity associated with fumarolic gas emissions at the crater sea floor (water depth 200 m) is considered to be related with magmatic activity of the Aira Caldera. During the NT05‐13 dive expedition conducted in August 2005 using remotely operated vehicle Hyper‐Dolphine (Japan Agency for Marine‐Earth Science and Technology), an active shimmering site was discovered (tentatively named the North site) at approximately 1 km from the previously known site (tentatively named the South site). Surface sediment (up to 30 cm) was cored from six localities including these active sites, and the alteration minerals and pore fluid chemistry were studied. The pore fluids of these sites showed a drastic change in chemical profile from that of seawater, even at 30 cm below the surface, which is attributed to mixing of the ascending hydrothermal component and seawater. The hydrothermal component of the North site is estimated to be derived from a hydrothermal aquifer at 230°C based on the hydrothermal end‐member composition. Occurrence of illite/smectite interstratified minerals in the North site sediment is attributed to in situ fluid–sediment interaction at a temperature around 150°C, which is in accordance with the pore fluid chemistry. In contrast, montmorillonite was identified as the dominant alteration mineral in the South site sediment. Together with the significant low potassium concentration of the hydrothermal end‐member, the abundant occurrence of low‐temperature alteration mineral suggests that the hydrothermal aquifer in the South site is not as high as 200°C. Moreover, the montmorillonite is likely to be unstable with the present pore fluid chemistry at the measured temperature (117°C). This disagreement implies unstable hydrothermal activity at the South site, in contrast to the equilibrium between the pore fluid and alteration minerals in the North site sediment. This difference may reflect the thermal and/or hydrological structure of the Wakamiko Crater hydrothermal system.  相似文献   
8.
Propagation of electromagnetic (EM) waves from an earthquake focus in the conductive Earth has been investigated using 1/1,000,000 scaling models taking earth-ionosphere and ocean-Moho plane parallel-plate waveguides into account. Microwaves at a frequency, ωm, a million times higher than that of seismic EM signal (SEMS), ω, were generated at the model focus. They are propagated in a salt solution modeling the earth's crust and reflected by ocean, fault planes, ionosphere and Moho plane all made by aluminum. Distribution of EM power was mapped by scanning a detector antenna over the model Earth's surface. The skin depth, δ, calculated by the exact skin depth equation, 1/δ=ω(μ/2)1/2 [(1+(1/ωρ)2)1/2 −1]1/2 where dielectric constant, and permeability, μ are the same but resistivity, ρ, 10−6 times smaller than that of Earth, gave 10−6 times small skin depth validating the model scaling index. Images for evanescent and wave-ripple standing waves disturbed by normal, strike-slip and dip-slip conductive fault planes have been obtained using an aluminum plate. The co-circular contour map above the epicenter due to evanescence was pushed to the north east direction from the epicenter by the presence of ocean for the Loma Prieta earthquake, while to north direction for the Kobe earthquake. The intensity of EM ULF emissions for the Loma Prieta earthquake is discussed quantitatively.  相似文献   
9.
 In-situ X-ray diffraction measurements of CaGeO3-wollastonite at high pressure at room temperature have been performed using a diamond anvil cell with an X-ray source. A new structural modification of CaGeO3-wollastonite is observed at about 6GPa and the characteristic reflections of the high pressure form are preserved on decompression to an ambient pressure. A rhodonite-like structure is proposed as a high pressure form from the crystal chemical consideration. The rhodonite-like phase is further transformed into a perovskite-form at about 15 GPa. The rhodonite-like-form of CaGeO3 seems not to be a stable phase from the heating experiments under high pressures. The metastable transition path from the wollastonite to the perovskite polymorph through the rhodonite-like structure is kinetically favored under room temperature pressurization. No pressure-induced amorphization is observed during the transition into the perovskite-form, although the transition is accompanied by the coordination change of Ge atoms from fourfold to sixfold. Received: July 19, 1995 / Revised, accepted: August 1996  相似文献   
10.
Sea-level rise is likely to cause significant changes in the morphodynamic state of beaches in the higher latitudes, resulting in steeper beaches with larger particle sizes. These physical changes have implications for beach invertebrate communities, which are determined largely by sediment particle size, and hence for ecosystem function. Previous studies have explored the relationships between invertebrate communities and environmental variables such as particle size, beach slope and exposure to wave action, and often these physical variables can be integrated in various indices of morphodynamic state. Most of these studies incorporated a full range of beach types that included wave-dominated surf beaches, where the wave action is harsh enough to enable reliable estimates of breaker height, a parameter included in several of the indices, and concluded that more dissipative beaches with gentler slopes and finer particle sizes often support a higher number of species and greater abundance than more reflective beaches. Whether these predictions remain valid for less wave-dominated beaches, where breaker height is more difficult to determine, is uncertain. In the present study, the abundance of meio- and macrofauna was quantified across a range of beaches in the UK, which are generally towards the lower energy end of the morphodynamic gradient, and their relationships with beach physical properties explored. No significant relationships were found between abundance and the standard morphodynamic indices, but significant relationships were found for both macro- and meiofaunal abundance when these indices were combined with an exposure index (derived from velocity, direction, duration and the effective fetch). All the relationships identified between abundance and combined morphodynamic indices indicated a higher abundance of both macro- and meiofauna on the more dissipative beaches. The reverse was however found for species richness. If predictions that accelerated sea-level rise will move beaches towards a more reflective morphodynamic state are correct, this could lead to declines in the abundance of meio- and macrofauna, with potential adverse consequences for ecosystem functioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号