首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   4篇
测绘学   2篇
地球物理   8篇
地质学   22篇
海洋学   10篇
天文学   19篇
自然地理   1篇
  2021年   2篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   2篇
  2009年   6篇
  2008年   10篇
  2007年   5篇
  2006年   5篇
  2005年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1983年   1篇
  1980年   1篇
排序方式: 共有62条查询结果,搜索用时 296 毫秒
1.
2.
Variations in sulfur mineralogy and chemistry of serpentinized peridotites and gabbros beneath the Lost City Hydrothermal Field at the southern face of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were examined to better understand serpentinization and alteration processes and to study fluid fluxes, redox conditions, and the influence of microbial activity in this active, peridotite-hosted hydrothermal system. The serpentinized peridotites are characterized by low total sulfur contents and high bulk δ34S values close to seawater composition. Low concentrations of 34S-enriched sulfide phases and the predominance of sulfate with seawater-like δ34S values indicate oxidation, loss of sulfide minerals and incorporation of seawater sulfate into the serpentinites. The predominance of pyrite in both serpentinites and gabbros indicates relatively high fO2 conditions during progressive serpentinization and alteration, which likely result from high fluid fluxes during hydrothermal circulation and evolution of the Lost City system from temperatures of ∼250 to 150 °C. Sulfate and sulfide minerals in samples from near the base of hydrothermal carbonate towers at Lost City show δ34S values that reflect the influence of microbial activity. Our study highlights the variations in sulfur chemistry of serpentinized peridotites in different marine environments and the influence of long-lived, moderate temperature peridotite-hosted hydrothermal system and high seawater fluxes on the global sulfur cycle.  相似文献   
3.
In-situ uplifted portions of oceanic crust at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were drilled during Expeditions 304 and 305 of the Integrated Ocean Drilling Program (IODP) and a 1.4 km section of predominantly gabbroic rocks with minor intercalated ultramafic rocks were recovered. Here we characterize variations in sulfur mineralogy and geochemistry of selected samples of serpentinized peridotites, olivine-rich troctolites and diverse gabbroic rocks recovered from Hole 1309D. These data are used to constrain alteration processes and redox conditions and are compared with the basement rocks of the southern wall of the Atlantis Massif, which hosts the Lost City Hydrothermal Field, 5 km to the south. The oceanic crust at the central dome is characterized by Ni-rich sulfides reflecting reducing conditions and limited seawater circulation. During uplift and exhumation, seawater interaction in gabbroic-dominated domains was limited, as indicated by homogeneous mantle-like sulfur contents and isotope compositions of gabbroic rocks and olivine-rich troctolites. Local variations from mantle compositions are related to magmatic variability or to interaction with seawater-derived fluids channeled along fault zones. The concomitant occurrence of mackinawite in olivine-rich troctolites and an anhydrite vein in a gabbro provide temperature constraints of 150-200 °C for late circulating fluids along local brittle faults below 700 m depth. In contrast, the ultramafic lithologies at the central dome represent domains with higher seawater fluxes and higher degrees of alteration and show distinct changes in sulfur geochemistry. The serpentinites in the upper part of the hole are characterized by high total sulfide contents, high δ34Ssulfide values and low δ34Ssulfate values, which reflect a multistage history primarily controlled by seawater-gabbro interaction and subsequent serpentinization. The basement rocks at the central dome record lower oxygen fugacities and more limited fluid fluxes compared with the serpentinites and gabbros of the Lost City hydrothermal system. Our studies are consistent with previous results and indicate that sulfur speciation and sulfur isotope compositions of altered oceanic mantle sequences commonly evolve over time. Heterogeneities in sulfur geochemistry reflect the fact that serpentinites are highly sensitive to local variations in fluid fluxes, temperature, oxygen and sulfur fugacities, and microbial activity.  相似文献   
4.
Hydroids are typically attached, benthic cnidarians that feed on a variety of small prey. During sampling on Georges Bank in spring 1994, we found huge numbers of hydroids suspended in the plankton. They fed on young stages of copepods that are an important prey for fish, as well as on young fish themselves. Two independent methods were used to estimate feeding rates of the hydroids; both indicate that the hydroids are capable of consuming from 50% to over 100% of the daily production of young copepods. These results suggest that hydroids can have a profound effect on the population dynamics of zooplankton and young fish on Georges Bank.  相似文献   
5.
Transverse ridges are elongate reliefs running parallel and adjacent to transform/fracture zones offsetting mid-ocean ridges. A major transverse ridge runs adjacent to the Vema transform (Central Atlantic), that offsets the Mid-Atlantic Ridge by 320 km. Multibeam morphobathymetric coverage of the entire Vema Transverse ridge shows it is an elongated (300 km), narrow (<30 km at the base) relief that constitutes a topographic anomaly rising up to 4 km above the predicted thermal contraction level. Morphology and lithology suggest that the Vema Transverse ridge is an uplifted sliver of oceanic lithosphere. Topographic and lithological asymmetry indicate that the transverse ridge was formed by flexure of a lithospheric sliver, uncoupled on its northern side by the transform fault. The transverse ridge can be subdivided in segments bound by topographic discontinuities that are probably fault-controlled, suggesting some differential uplift and/or tilting of the different segments. Two of the segments are capped by shallow water carbonate platforms, that formed about 3–4 m.y. ago, at which time the crust of the transverse ridge was close to sea level. Sampling by submersible and dredging indicates that a relatively undisturbed section of oceanic lithosphere is exposed on the northern slope of the transverse ridge. Preliminary studies of mantle-derived ultramafic rocks from this section suggest temporal variations in mantle composition. An inactive fracture zone scarp (Lema fracture zone) was mapped south of the Vema Transverse ridge. Based on morphology, a fossil RTI was identified about 80 km west of the presently active RTI, suggesting that a ridge jump might have occurred about 2.2 m.a. Most probable causes for the formation of the Vema Transverse ridge are vertical motions of lithospheric slivers due to small changes in the direction of spreading of the plates bordering the Vema Fracture Zone.  相似文献   
6.
Cross-shelf distribution and abundance of copepod nauplii and copepodids were measured during three summer upwelling seasons (2000–2002) in a coastal upwelling zone off northern California. These 3 years varied considerably in the intensity of winds, abundance of chlorophyll, and water temperature. The cruises in 2000 were characterized by relaxation conditions, with generally high levels of chlorophyll and high water temperature. The cruises in 2001 and 2002 were dominated by strong and persistent upwelling events, leading to lower chlorophyll and water temperatures. The copepod assemblage was dominated by Oithona spp., Acartia spp. and Pseudocalanus spp., with Metridia pacifica (lucens), Microsetella rosea, Oncaea spp. and Tortanus discaudatus also common during all 3 years. The cross-shelf distribution of copepods was generally shifted offshore during upwelling and onshore during relaxation events, although some variability between species occurred. Abundance of all life stages generally exhibited a negative correlation with cross-shelf transport averaged over at least 1–4 days and lagged by 0–3 days, indicating lower abundances during and immediately after active upwelling. However, copepod nauplii seemed to respond positively to wind events lasting 1–5 days followed by a period of relaxation lasting 6 or 7 days. These rapid rates of change in abundance are probably too great to be due to in situ growth and reproduction alone; physical processes must also play a role. These results suggest a highly dynamic relationship between copepods and upwelling events off northern California, with species-specific responses to upwelling to be expected.  相似文献   
7.
Two different contamination processes have been identified as having been operative in the genesis of a plutonic suite: initial contamination of a mantle source, and subsequent crustal contamination of uprising partial melts from the mantle. These processes are indicated by a detailed analyses of Nd, Sr, and oxygen isotopes together with major-and trace-elements of the 32–30 Ma calc-alkaline Bergell intrusion. This intrusion is located at the suture of the Alpine continental collision zone and contains rock types capable of discriminating between mantle and intracrustal processes. A range from basaltic-andesitic dykes in the surrounding country rocks, cumulitic hornblendites, gabbros, tonalite, granodiorite and lamprophyres, to pegmatites and aplites, is exposed in this single intrusion. The results of REE modelling and isotopic compositions of the basic members suggest that the cumulates were fractionated from a picrobasaltic liquid originating by partial melting of enriched subcontinental mantle (Nd=+4). Increases in 87Sr/86Sr (0.7055) and 18O(+6.7) in these samples relative to the mantle array and compositions of other Periadriatic intrusions are most likely the result of an initial contamination of the mantle source by dehydration or partial melting of altered subducted oceanic crust. Slight differentiation of such a picrobasaltic liquid produced the basaltic-andesitic dykes. Simultaneous fractional crystallization and contamination of the uprising magma by continental crust produced crustal isotopic signatures which increase with acidity to values of (Nd=-7.6), 87Sr/86Sr=0.716 and 18O=+10. The crustal imprint and LREE enrichment in the dominating tonalite increase with decreasing crystallization depth which indicates that the tonalites were emplaced in several distinct batches with different degrees of contamination. Shoshonitic lamprophyres, which intruded into the partly solidified granodiorite, were generated in a deep, strongly contaminated mantle source. The posttectonic 26 Ma Novate leucogranite is not cogenetic with the main Bergell body, but rather formed from a predominantly crustal source. If the described features are indeed due to mantle source contamination processes, which are well known for volcanic arcs, it must be concluded that these may also play a significant role in the genesis of calcalkaline plutonic suites.  相似文献   
8.
9.
Willapa Bay is a large, economically and ecologically important estuary on the Washington coast, USA for which the zooplankton community has not previously been studied. Thus, in 2006 and 2007, six stations within Willapa Bay were sampled biweekly for macrozooplankton, chlorophyll, and various abiotic variables to elucidate the processes underlying community composition and dynamics. Non-metric multidimensional scaling identified water temperature and upwelling values as major factors defining two distinct temporal communities. High densities and a community dominated by oceanic species (Calanus pacificus, Centropages abdominalis) marked the winter season, while summer (or the upwelling season) was dominated by estuarine species (Palaemonidae, Clevelandia ios). Smaller scale changes in the community were characterized by variation in chlorophyll a concentration and salinity and were marked by the presence of other taxa (Neotrypaea californiensis, Mysidae). These results point to the importance of physical processes, including the import of marine organisms and retention of estuarine organisms, in the structuring of the macrozooplankton community in Willapa Bay.  相似文献   
10.
Abstract— We investigate the possibility that Mercury's crust is very reduced with FeO concentrations of less than ?0.1 wt%. We believe that such a surface could have a composition of enstatite, plagioclase, diopside, and sulfide, similar to the mineral assemblages found in aubritic meteorites. To test this hypothesis, we investigated the spectra of aubrites and their constituent minerals as analogs for the surface of Mercury. We found that some sulfides have distinctive absorption features in their spectra shortwards of ?0.6 μm that may be apparent in the spectrum of such an object. Determination of the surface composition of Mercury using orbital x‐ray spectroscopy should easily distinguish between a lunar highlands and enstatite basalt composition since these materials have significant differences in concentrations of Al, Mg, S, and Fe. The strongest argument against Mercury having an enstatite basalt composition is its extreme spectral redness. Significant reddening of the surface of an object (such as Mercury) is believed to require reduction of FeO to nanophase iron, thus requiring a few percent FeO in the material prior to alteration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号