首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
  国内免费   1篇
测绘学   7篇
大气科学   2篇
地球物理   12篇
地质学   42篇
海洋学   4篇
天文学   1篇
自然地理   1篇
  2022年   1篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   6篇
  2012年   2篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   3篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1984年   3篇
  1983年   5篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有69条查询结果,搜索用时 234 毫秒
1.
2.
A new generation of Earth gravity field models called GGM02 are derived using approximately 14 months of data spanning from April 2002 to December 2003 from the Gravity Recovery And Climate Experiment (GRACE). Relative to the preceding generation, GGM01, there have been improvements to the data products, the gravity estimation methods and the background models. Based on the calibrated covariances, GGM02 (both the GRACE-only model GGM02S and the combination model GGM02C) represents an improvement greater than a factor of two over the previous GGM01 models. Error estimates indicate a cumulative error less than 1 cm geoid height to spherical harmonic degree 70, which can be said to have met the GRACE minimum mission goals. Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   
3.
 The equilibrium water content of cordierite has been measured for 31 samples synthesized at pressures of 1000 and 2000 bars and temperatures from 600 to 750° C using the cold-seal hydrothermal technique. Ten data points are presented for pure magnesian cordierite, 11 data points for intermediate iron/magnesium ratios from 0.25 to 0.65 and 10 data points for pure iron cordierite. By representing the contribution of H2O to the heat capacity of cordierite as steam at the same temperature and pressure, it is possible to calculate a standard enthalpy and entropy of reaction at 298.18° K and 1 bar for, (Mg,Fe)2Al4Si5O18+H2O ⇄ (Fe,Mg)2Al4Si5O18.H2O Combining the 31 new data points with 89 previously published experimental measurements gives: ΔH ° r =–37141±3520 J and ΔS °  r =–99.2±4 J/degree. This enthalpy of reaction is within experimental uncertainty of calorimetric data. The enthalpy and entropy of hydration derived separately for magnesian cordierite (–34400±3016 J, –96.5±3.4 J/degree) and iron cordierite (–39613±2475, –99.5±2.5 J/degree) cannot be distinguished within the present experimental uncertainty. The water content as a function of temperature, T(K), and water fugacity, f(bars), is given by n H2O=1/[1+1/(K ⋅ f H2O)] where the equilibrium constant for the hydration reaction as written above is, ln K=4466.4/T–11.906 with the standard state for H2O as the gas at 1 bar and T, and for cordierite components, the hydrous and anhydrous endmembers at P and T. Received: 2 August 1994/Accepted: 7 February 1996  相似文献   
4.
Norbert I. K 《冰川冻土》2004,26(Z1):310-318
The exploration of ice sheets by melting vertical holes into the ground has some tradition in terrestrial glaciology. Such probes have been used since the 1960's to investigate the vertical structure of the ice in Greenland and Antarctica and in alpine glaciers. In this paper we look into the possibility to develop similar devices for use on extraterrestrial icy bodies, like e.g. the polar areas on Mars or the icy satellites of the outer solar system. We report on some basic experiments performed in the cryo-vacuum laboratory of the Space Research Institute of the Austrian Academy of Sciences, Graz. In these experiments the penetration of a simple melting probe into compact and porous water ice (with a snow-like texture) was monitored, both under vacuum conditions and under air pressure. The observed penetration speeds for a given power supply are compared with a simple mathematical model. We conclude that a miniature melting probe with small overall dimensions and a reasonable power demand could well be part of the payload of a future planetary mission, for example to the poles of Mars. Such missions are currently under discussion in several space agencies. Moreover such probes could also e? ectively be used in terrestrial environments. A possible design is presented at the end of the paper.  相似文献   
5.
6.
Fourteen core samples of Precambrian granitic gneisses from a well drilled in the Green Township, Scioto County, Ohio were studied to determine the origin of alkali feldspar in these rocks. The well intersected the basement at a depth of 1,700 m and penetrated 11.3m of Precambrian crystalline rocks. Petrographically the samples in the upper 6.4 m of the basement core show evidence of severe alteration by the presence of hematite, limonite and chlorite and by the absence of plagioclase. Alkali feldspars from this part of the core are turbid, have a low 2 V of about 10°, are highly enriched in K, have low Na and Rb concentrations, lack cathode luminescence, and form a straight line on a Rb-Sr isochron diagram yielding a date of 599±69 Ma. Core samples from below 6.4 m appear relatively fresh and unaltered. Alkali feldspar from this portion of the core is orthoclase, shows uniform blue luminescence and gives a Rb-Sr date of 1,162±11 Ma. These results indicate that feldspars in the lowest part of the core are primary minerals that crystallized during the Grenville Orogeny, whereas the K-feldspar in the top of the core is of low-temperature secondary origin. The formation of this feldspar is explained as a consequence of chemical weathering of primary feldspar during late Precambrian time to clay minerals that were later reconstituted under low-temperature hydrothermal conditions as K-feldspar (adularia) by reactions with brines derived from the overlying Mt. Simon Formation of Cambrian age.Laboratory for Isotope Geology and Geochemistry (Isotopia), Contribution No. 68  相似文献   
7.
8.
The equilibrium position of the reaction $$\begin{gathered} 1.5 KAlSi_3 O_8 + HCl = 0.5 KAl_3 Si_3 O_{10} (OH)_2 \hfill \\ + 3SiO_2 + KCl \hfill \\ \end{gathered} $$ has been located at 1 and 2 kb pressure and temperatures between 600° and 670° C using the Ag-AgCl buffer. These data can be combined with information on the dissociation of KC1, HC1 and H2O to determine species abundances in supercritical aqueous fluids in equilibrium with muscovite — K-feldspar — quartz assemblages. Chloride species become increasingly associated with increasingT, increasing total molality, (m tot or \(m_{Cl_{tot} } \) ), and decreasing \(P_{H_2 O} \) . Master variable diagrams indicate that the pH of the solutions may vary from near neutral to quite acid. Published data on the paragonite-albite-quartz reaction and exchange reactions involving feldspars and micas were included to calculate speciation in mica-feldspar-NaCl-KCl-HCl-H2O fluids at 2kb pressure and temperatures between 300° and 600° C. The data are not accurate enough to distinguish different feldspar structural states. Concentration gradients were calculated for individual species between K-feldspar+quartz, muscovite+quartz and andalusite+quartz assemblages at 500° C, 2 kb. Assuming that the proton diffuses most rapidly and that there are no [H+] gradients, the molality of the solution must vary 30-fold, with feldspar+quartz at the more concentrated side. The data on mica-feldspar-chloride equilibria are used to interpret the spacial distribution of micas, feldspar and quartz in microfolds. This distribution can be accounted for by pressure solution, due to the fact that non-hydrostatic pressure affects congruently dissolving minerals, auch as quartz, differently from minerals which dissolve incongruently, such as micas and feldspars. We postulate, that during folding at constant \(P_{H_2 O} \) ,T and \(m_{Cl - } \) , gradients in KC1 and SiO2 are created by stress differences between hinge and limb of a microfold, such that both migrate to the hinge area where quartz precipitates and muscovite is converted to K-felspar, thus accounting for the observed mineral distribution.  相似文献   
9.
Theδ18O (SMOW) values of the Kirkpatrick Basalt (Jurassic) on Mt. Falla, Queen Alexandra Range, vary between +6.3‰ and +8.6‰ The apparent enrichment of these rocks in18O excludes the possibility that they were altered by interaction with aqueous solutions of meteoric origin. Theδ18O values of the flows correlate significantly with the initial87Sr/86Sr ratios and all major elements. These correlations confirm the hypothesis that the basalt magma was contaminated by rocks of the continental crust through which it was extruded. Estimates of the chemical composition of the basalt magma and the contaminant, based on extrapolations of the new oxygen data, generally confirm earlier estimates based on extrapolations of initial87Sr/86Sr ratios. The87Sr/86Sr ratio of the uncontaminated basalt was 0.7093 which indicates that magma may have originated by melting either in old Rb-enriched lithospheric mantle under Antarctica or in the overlying crust, or both.  相似文献   
10.
The relations between cordiente, hercynite and magnetite in specimens of the garnetiferous migmatites within the osumilite-in isograd from the high-grade polymetamorphic Precambrian of Rogaland, SW Norway, have been studied, using an electron microprobe. In most specimens the primary spinel of the M 2 stage of metamorphism is exsolved into hercynite and magnetite. The exsolution continued during subsequent cooling to moderate temperature conditions of the M 2 stage or even to retrogressive conditions of metamorphism of the M 4 stage. Fe-Mg distributions give evidence that cordierite and hercynite are in equilibrium at these mentioned conditions, while their textural relations belong to the high-grade metamorphic stage M 2. This implies that neither cordierite nor spinel are suitable for use in geothermometry of high-grade metamorphic stage M 2 in Rogaland. It is tentatively concluded that re-equilibration of Mg and Fe continues to lower retrograde temperatures in the Fe-rich cordierite-hercynite pairs than in Mg-rich pairs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号