首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
大气科学   1篇
地球物理   6篇
海洋学   6篇
  2017年   1篇
  2013年   4篇
  2012年   1篇
  2011年   2篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 390 毫秒
1.
2.
The purple-tipped sea urchin, Psammechinus miliaris, was exposed to artificially acidified seawater treatments (pH(w) 6.16, 6.63 or 7.44) over a period of 8 days. Urchin mortality of 100% was observed at pH(w) 6.16 after 7 days and coincided with a pronounced hypercapnia in the coelomic fluid producing an irrecoverable acidosis. Coelomic fluid acid-base measures showed that an accumulation of CO(2) and a significant reduction in pH occurred in all treatments compared with controls. Bicarbonate buffering was employed in each case, reducing the resultant acidosis, but compensation was incomplete even under moderate environmental hypercapnia. Significant test dissolution was inferred from observable increases in the Mg(2+) concentration of the coelomic fluid under all pH treatments. We show that a chronic reduction of surface water pH to below 7.5 would be severely detrimental to the acid-base balance of this predominantly intertidal species; despite its ability to tolerate fluctuations in pCO(2) and pH in the rock pool environment. The absence of respiratory pigment (or any substantial protein in the coelomic fluid), a poor capacity for ionic regulation and dependency on a magnesium calcite test, make echinoids particularly vulnerable to anthropogenic acidification. Geological sequestration leaks may result in dramatic localised pH reductions, e.g. pH 5.8. P. miliaris is intolerant of pH 6.16 seawater and significant mortality is seen at pH 6.63.  相似文献   
3.
The abundance and behaviour of fish on and around coral reefs at Twin Mounds and Giant Mounds, carbonate mounds located on the continental shelf off Ireland (600-1100 m), were studied using two Remotely Operated Vehicle (ROV) dives. We recorded 30 fish taxa on the dives, together with three species of Scleractinia (Lophelia pertusa, Madrepora oculata and Desmophyllum cristagalli) and a diverse range of other corals (Antipatharia, Alcyonacea, and Stylasteridae). Stands of live coral provided the only habitat in which Guttigadus latifrons was observed whereas Neocyttus helgae was found predominantly on structural habitats provided by dead coral. Significantly more fish were found on structurally complex coral rubble habitats than on flatter areas where coral rubble was clogged with sand. The most common species recorded was Lepidion eques (2136 individuals), which always occurred a few cm above bottom and was significantly more active on the reefs than on sedimentary habitats. Synaphobranchus kaupii (1157 indiv.), N. helgae (198 indiv.) and Micromesistius poutassou (116 indiv.) were also common; S. kaupii did not exhibit habitat-related differences in behaviour, whilst N. helgae was more active over the reefs and other structured habitats whereas M. poutassou was more active with decreasing habitat complexity. Trawl damage and abandoned fishing gear was observed at both sites. We conclude that Irish coral reefs provide complex habitats that are home to a diverse assemblage of fish utilising the range of niches occurring both above and within the reef structure.  相似文献   
4.
While carbon capture and storage (CCS) is increasingly recognised as technologically possible, recent evidence from deep-sea CCS activities suggests that leakage from reservoirs may result in highly CO2 impacted biological communities. In contrast, shallow marine waters have higher primary productivity which may partially mitigate this leakage. We used natural CO2 seeps in shallow marine waters to assess if increased benthic primary productivity could capture and store CO2 leakage in areas targeted for CCS. We found that the productivity of seagrass communities (in situ, using natural CO2 seeps) and two individual species (ex situ, Cymodocea serrulata and Halophila ovalis) increased with CO2 concentration, but only species with dense belowground biomass increased in abundance (e.g. C. serrulata). Importantly, the ratio of below:above ground biomass of seagrass communities increased fivefold, making seagrass good candidates to partially mitigate CO2 leakage from sub-seabed reservoirs, since they form carbon sinks that can be buried for millennia.  相似文献   
5.
6.
Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthesis in those algae that are currently carbon limited, leading to shifts in the structure and function of seaweed communities. Recent studies have shown that ocean acidification-driven shifts in seaweed community dominance will depend on interactions with other factors such as light and nutrients. The study of interactive effects of ocean acidification and warming can help elucidate the likely effects of climate change on marine primary producers. In this study, we investigated the ecophysiological responses of Cystoseira tamariscifolia (Hudson) Papenfuss. This large brown macroalga plays an important structural role in coastal Mediterranean communities. Algae were collected from both oligotrophic and ultraoligotrophic waters in southern Spain. They were then incubated in tanks at ambient (ca. 400–500 ppm) and high CO2 (ca. 1200–1300 ppm), and at 20 °C (ambient temperature) and 24 °C (ambient temperature +4 °C). Increased CO2 levels benefited the algae from both origins. Biomass increased in elevated CO2 treatments and was similar in algae from both origins. The maximal electron transport rate (ETRmax), used to estimate photosynthetic capacity, increased in ambient temperature/high CO2 treatments. The highest polyphenol content and antioxidant activity were observed in ambient temperature/high CO2 conditions in algae from both origins; phenol content was higher in algae from ultraoligotrophic waters (1.5–3.0%) than that from oligotrophic waters (1.0–2.2%). Our study shows that ongoing ocean acidification can be expected to increase algal productivity (ETRmax), boost antioxidant activity (EC 50 ), and increase production of photoprotective phenols. Cystoseira tamariscifolia collected from oligotrophic and ultraoligotrophic waters were able to benefit from increases in DIC at ambient temperatures. Warming, not acidification, may be the key stressor for this habitat as COlevels continue to rise.  相似文献   
7.
To reduce the negative effect of climate change on Biodiversity, the use of geological CO2 sequestration has been proposed; however leakage from underwater storages may represent a risk to marine life. As extracellular homeostasis is important in determining species’ ability to cope with elevated CO2, we investigated the acid–base and ion regulatory responses, as well as the density, of sea urchins living around CO2 vents at Vulcano, Italy. We conducted in situ transplantation and field-based laboratory exposures to different pCO2/pH regimes. Our results confirm that sea urchins have some ability to regulate their extracellular fluid under elevated pCO2. Furthermore, we show that even in closely-related taxa divergent physiological capabilities underlie differences in taxa distribution around the CO2 vent. It is concluded that species distribution under the sort of elevated CO2 conditions occurring with leakages from geological storages and future ocean acidification scenarios, may partly be determined by quite subtle physiological differentiation.  相似文献   
8.
9.
Marine environments with naturally high CO2 concentrations have become important research sites for studying the impacts of future ocean acidification on biological processes. We conducted high temporal resolution pH and temperature measurements in and around a shallow (2.5-3 m) CO2 vent site off Ischia, Italy in May and June 2008. Loggers were deployed at five stations to monitor water at both the surface and benthos. Our reference station, 500 m from the CO2 vent, had no noticeable vent influence. It had a naturally high and stable benthic pH (mean 8.16, inter-quartile range (IQ): 8.14-8.18) fluctuating with diel periodicity, presumably driven by community photosynthesis and respiration. A principal component analysis (PCA) revealed that the pH of this station was well constrained by meteorological parameters. In contrast, a station positioned within the vent zone, had a low and very variable benthic mean pH of 7.11 (IQ: 6.91-7.62) with large pH fluctuations not well constrained by a PCA. Any stations positioned within 20 m of the main vent zone had lowered pH, but suffered from abnormally large pH fluctuations making them unsuitable representatives to predict future changes to a shallow coastal environment. Between these extremes, we identified a benthic area with a lower pH of 7.84 (IQ: 7.83-7.88) that retained many of the characteristics of the reference station such as a natural diel pH periodicity and low variability. Our results indicate that a range of pH environments maybe commonplace near CO2 vents due to their characteristic acidification of benthic water over a wide area. Such environments could become invaluable natural laboratories for ocean acidification research, closely mimicking future CO2 conditions in a natural setting.  相似文献   
10.
The impacts of ocean acidification on coastal biofilms are poorly understood. Carbon dioxide vent areas provide an opportunity to make predictions about the impacts of ocean acidification. We compared biofilms that colonised glass slides in areas exposed to ambient and elevated levels of pCO(2) along a coastal pH gradient, with biofilms grown at ambient and reduced light levels. Biofilm production was highest under ambient light levels, but under both light regimes biofilm production was enhanced in seawater with high pCO(2). Uronic acids are a component of biofilms and increased significantly with high pCO(2). Bacteria and Eukarya denaturing gradient gel electrophoresis profile analysis showed clear differences in the structures of ambient and reduced light biofilm communities, and biofilms grown at high pCO(2) compared with ambient conditions. This study characterises biofilm response to natural seabed CO(2) seeps and provides a baseline understanding of how coastal ecosystems may respond to increased pCO(2) levels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号