首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   0篇
大气科学   14篇
地球物理   4篇
地质学   1篇
海洋学   3篇
天文学   12篇
自然地理   13篇
  2020年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1967年   4篇
  1966年   4篇
排序方式: 共有47条查询结果,搜索用时 218 毫秒
1.
A modelling study of the electron content of the mid-latitude ionosphere and protonosphere has been carried out for solstice conditions using the mathematical model of Bailey (1983). In the model calculations coupled time-dependent O+, H+ continuity and momentum equations and O+, H+ and electron heat balance equations are solved for a magnetic shell extending over both hemispheres. The inclusion of interhemispheric flow of plasma and of heat balance has enabled us to investigate the role of interhemispheric coupling on the electron content and related shape parameters. The computed results are compared with results from slant path observations of the ATS-6 radio beacon made at Lancaster (U.K.) and Boulder, Colorado (U.S.A.).It has been found that the conjugate photoelectron heating has a major effect on the shape of the daily variation of slant slab thickness (τ) and also on the magnitude of the protonospheric content (Np). Some of the main features of τ are closely related to the sunrise and sunset times in the conjugate ionosphere. Also it is found that night-time increases in total electron content (NT) and F2 region peak electron density (Nmax) in winter are natural consequences of ionization loss at low altitudes causing an enhanced downward flow of plasma from the protonosphere which is coupled to the summer hemisphere. One other important consequence of the coupled protonosphere is that the effects on NT of the neutral air wind are not much different in winter from those in summer.  相似文献   
2.
3.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   
4.
We have used the Grid ENabled Integrated Earth system modelling (GENIE) framework to undertake a systematic search for bi-stability of the ocean thermohaline circulation (THC) for different surface grids and resolutions of 3-D ocean (GOLDSTEIN) under a 3-D dynamical atmosphere model (IGCM). A total of 407,000 years were simulated over a three month period using Grid computing. We find bi-stability of the THC despite significant, quasi-periodic variability in its strength driven by variability in the dynamical atmosphere. The position and width of the hysteresis loop depends on the choice of surface grid (longitude-latitude or equal area), but is less sensitive to changes in ocean resolution. For the same ocean resolution, the region of bi-stability is broader with the IGCM than with a simple energy-moisture balance atmosphere model (EMBM). Feedbacks involving both ocean and atmospheric dynamics are found to promote THC bi-stability. THC switch-off leads to increased import of freshwater at the southern boundary of the Atlantic associated with meridional overturning circulation. This is counteracted by decreased freshwater import associated with gyre and diffusive transports. However, these are localised such that the density gradient between North and South is reduced tending to maintain the THC off state. THC switch-off can also generate net atmospheric freshwater input to the Atlantic that tends to maintain the off state. The ocean feedbacks are present in all resolutions, across most of the bi-stable region, whereas the atmosphere feedback is strongest in the longitude–latitude grid and around the transition where the THC off state is disappearing. Here the net oceanic freshwater import due to the overturning mode weakens, promoting THC switch-on, but the atmosphere counteracts this by increasing net freshwater input. This increases the extent of THC bi-stability in this version of the model. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
5.
The principal advance of the ATS-6 satellite beacon experiment was the ability to deduce continuously the electron content along the entire slant path from ground-based measurements of the signal group delay. This feature has been exploited in conjunction with the more usual Faraday rotation technique to separate the total electron content into ionospheric and protonospheric components. The physical validity of the deduced quantities is investigated using a mathematical model of the plasmasphere in which integration of the time-dependent continuity and momentum equations for oxygen and hydrogen ions along selected L shells yields the ion concentrations and field-aligned fluxes. The ion concentrations are then integrated along the propagation path to various ground stations from ATS-6 to give computed values for comparison with observations. The mathematical model is used with different sets of atmospheric parameters to investigate the significance of ionospheric and protonospheric contents as derived from beacon data.The calculated electron concentrations are able to reproduce mid-latitude equinoctial electron content observations. The shape parameters τ and F can also be simulated by day, but night-time values do not match the observations well, a greater protonospheric content being required. The calculations show that the quantity Np, which is readily derived from ATS-6 observations, may be interpreted as the slant H+ content above some fixed height in the case of some stations (but not others) if the plasmasphere is reasonably full. The total slant content of H+ is approx. twice the value of Np, though it appears that for the Lancaster raypath a closer relationship exists between Np and the H+ tube content at L = 1.8. In general,Np is most closely related to the tube content for an L value slightly greater than the minimum L intersected along the raypath.  相似文献   
6.
Recent satellite beacon derived measurements of the recovery of protonospheric ionization following periods of increased geomagnetic activity show that the recovery takes longer than is indicated by whistler measurements. Realistic plasmasphere models have been used to determine whether satellite beacon measurements are reliable indicators of this recovery. It is found that the recovery time of the protonospheric content is similar to that of the minimum L-value flux tube intersected by the slant raypaths. Satellite beacon results are therefore useful indicators of protonospheric recovery after a storm provided any unrepresentative diurnal variations are eliminated.  相似文献   
7.
The ionospheric and protonospheric regions of the plasmasphere, which are dominated by the O+ and H+ ionic species, respectively, interact by means of proton fluxes within tubes of magnetic force. The present study is concerned with the determination of these fluxes by the beacon satellite technique as used in the ATS-6 experiment in relation to three observing sites: Boulder, Colorado; Lancaster, U.K.; and Fairbanks, Alaska. From plasmasphere models based on solutions of the time dependent O+ and H+ momentum and continuity equations, it is shown that the time differential of the “residual content” as measured at Lancaster, provides a good estimate of the protonospheric flux at 4000km altitude in the L = 1.8 magnetic shell under quite geomagnetic conditions. The effect of the neutral thermospheric wind on the protonospheric flux is also investigated. Fluxes determined by the beacon technique for the period from September 1975 to July 1976 are shown, and these are compared with typical results derived from other techniques.  相似文献   
8.
In this study, we constructed a perturbed physics ensemble (PPE) for the MIROC5 coupled atmosphere–ocean general circulation model (CGCM) to investigate the parametric uncertainty of climate sensitivity (CS). Previous studies of PPEs have mainly used the atmosphere-slab ocean models. A few PPE studies using a CGCM applied flux corrections, because perturbations in parameters can lead to large radiation imbalances at the top of the atmosphere and climate drifts. We developed a method to prevent climate drifts in PPE experiments using the MIROC5 CGCM without flux corrections. We simultaneously swept 10 parameters in atmosphere and surface schemes. The range of CS (estimated from our 35 ensemble members) was not wide (2.2–3.2?°C). The shortwave cloud feedback related to changes in middle-level cloud albedo dominated the variations in the total feedback. We found three performance metrics for the present climate simulations of middle-level cloud albedo, precipitation, and ENSO amplitude that systematically relate to the variations in shortwave cloud feedback in this PPE.  相似文献   
9.
Although the time structure of auroral radio absorption, measured with riometers at high-latitude stations, is generally complex, some features are seen which have a relatively simple structure. Multiple riometer data from the magnetically-conjugate stations Great Whale River and Byrd demonstrate that many of these features show movements over a 250 km baseline. Both the velocities and the directions of movement are consistent with the substorm movements that have been detected in other auroral work, for example by visual observations or by auroral radar. The velocities range between 80 m/sec and 3.3 km/sec, the directions being predominantly westward in the evening sector and eastward in the morning. The observed behaviour is essentially the same in both hemispheres, though event-by-event comparisons show some differences of velocity. The data are applied to determine the instantaneous corresponding points in the two hemispheres; it is found that the corresponding point wanders by 130 km about its mean position. Some implications of the results are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号