首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地质学   4篇
海洋学   2篇
自然地理   1篇
  2010年   1篇
  2006年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
The three intracratonic sedimentary basins located in central Baltoscandinavia, namely the Bothnian Gulf basin, the Bothnian Sea basin and the Baltic basin, developed in response to Middle Proterozoic and Late Proterozoic tectonic events, separated in time by about 800 Ma. Only the Baltic basin was subsequently affected by Caledonian orogenesis and Mesozoic rifting. Crustal extension was minor or did not take place during the Proterozoic basin evolution phases. However, according to the Moho topography, crustal thinning did take place. This was probably a result of subcrustal magmatism. On a craton-wide scale, the ages of granitoids, which intruded during the Middle Proterozoic basin formation, generally decrease from east to west. This fact, combined with the evidence provided by mantle-derived flood basalt magmatism, points to a moving asthenospheric diapir as the cause for basin development. Asthenospheric upwelling was probably also responsible for the second, Late Proterozoic, basin evolution phase, as evidenced by the lack of crustal thinning and extension, and the occurrence of tholeiitic intrusions. In addition, a Late Proterozoic thermally induced palaeo-high, located at about the position of the intracratonic basins, is compatible with indications from glaciations. As the ages of Late Proterozoic intracratonic basins also decrease from east to west across the craton, the location of asthenospheric diapirism during this time interval was also moving. For the Fennoscandian lithosphere, the presence of fundamental lithospheric weakness zones (e.g. terrane boundaries) might be an explanation for the formation of two generations of basins originating from asthenospheric upwelling at about the same location in the Fennoscandian Shield. The spacing and size of the Proterozoic intracratonic basins suggest that the asthenospheric diapirism was not deep seated. Therefore, sublithospheric convective processes might be the cause for the asthenospheric upwellings. Such processes are related to Rayleigh–Taylor instabilities in the sublithospheric mantle. Emplacement of an asthenospheric diapir causes a thermal bulge at the surface of the lithosphere. Modelling results demonstrate that erosion of the surficial high, succeeded by cooling of the lithosphere, can explain the accumulation of early Palaeozoic sediments in the Bothnian Sea basin, taking into account post-Ordovician vertical and lateral erosion of the basin fill.  相似文献   
2.
Vertical dip-slip basement faults play an important role in the evolution and structuring of the Earth's crust. The Proterozoic anorogenic rapakivi-anorthosite setting of the Fennoscandian Shield in southern Finland exhibits a widespread pattern of vertical dip-slip basement faults that are deeply eroded. The Porkkala-Mantsala (PM)-fault, located c. 30 km W of Helsinki is part of a system of crustal lineaments that closely follows the outcrop pattern of Mid-Late Proterozoic anorogenic crustal elements, such as basic dyke swarms, the outline of rapakivi granites and remnants of sediment-filled grabens. These lineaments are formed by low-grade dip-slip faults that overprint Svecofennian shear zones. Structural analysis of the PM-fault supports an interpretation in terms of reactivation of a high-grade ductile wrench zone. Successive stages of brittle deformation visible in as well the PM-fault and the Obbnäs granite demonstrate that brittle deformation in the PM-fault is coeval with the intrusion of the anorogenic Obbnäs rapakivi granite. Based on the spatial and temporal relationship of anorogenic magmatism and block faulting, a genetic relationship is proposed.  相似文献   
3.
Interpretation of deep seismic reflection data across the Gascoyne Margin reveals six distinct seismic facies units related to the tectono-magmatic breakup history. On the outer Exmouth Plateau four large scale units are identified: (1) an extensively block-faulted upper crust; (2) a middle-crustal unit of discontinuous, undulatory reflectors; (3) a reflection-free deep crustal unit; and (4) a lower-crustal band of low-frequency, high-amplitude reflectors. Two additional units are found near the continent-ocean boundary (COB); (5) seaward-dipping reflectors (SDR); and (6) landward-dipping reflectors in the lower crust below the SDR. The lower-crustal high-reflectivity band, located near the top of a high-velocity unit (Vp > 7 kms–1), is interpreted as magmatic underplating. There is a spatial correlation between the underplated area and the presence of extensive upper-crustal block-faulting and intrusive rocks in the shallow crust. The undulatory middle-crustal reflector unit is also only identified in the outer plateau area, and is interpreted as a zone in which the upper-crustal faults terminate. The inner parts of the margin consist of a deep basin showing little upper-crustal faulting and no evidence of middle crustal deformation or underplating. Theoretical modeling of the effect of rifting and magmatic underplating on crustal strength profiles suggests that the brittle-ductile transition may migrate at least 5 km upwards during several million years after the underplating event. Based on the seismic interpretation and crustal strength modeling we propose that the seismic structure of the outer Exmouth Plateau is severely modified by a transient change in the crustal rheological structure associated with magmatic underplating.  相似文献   
4.
Heeremans  & Wijbrans 《地学学报》1999,11(5):216-222
The post-Svecofennian tectonic development of southern Finland is controlled by intrusion of rapakivi granites (and associated rocks), reactivation of Svecofennian wrench zones, formation of sedimentary basins and successive intrusion of olivine dolerite dykes and sills. Relative age determinations have revealed that fault reactivation acted before, simultaneously and after intrusion of the rapakivi granites. Results of 40Ar/39Ar geochronometry of the Porkkala–Mäntsälä fault (30 km west of Helsinki) reveal ages predominantly in the range 950–1300 Myr. These ages are all significantly younger than the intrusion age of the rapakivi granites. It is suggested that these ages represent tectonic events related to the intrusion of olivine dolerite dykes and sills in SW Finland and the Sveconorwegian Orogeny active further west. 40Ar/39Ar ages of a sample taken from the Obbnäs granite (U–Pb zircon ages of 1645 ± 5 Myr) show ages predom-inantly in the range of 1400–1550 Myr. These ages are suggested to represent either cooling ages of the granite or ages associated with the formation of the sedimentary grabens.  相似文献   
5.
6.
The geodynamic history of a region is archived in its geologic record which, in turn, may reflect deformation patterns that causally can be related to certain configurations of paleostresses. In the Oslo Region, the exposed geological record ranges from Precambrian high-grade metamorphic rocks through Cambro-Silurian sedimentary rocks to Permo-Carboniferous sedimentary and magmatic rocks, the latter being related to the development of the Oslo rift system. We investigate the kinematics of outcrop-scale faults to derive the diversity of paleostress states responsible for the observed strain. For this purpose, we combine different graphical and numerical approaches to separate heterogeneous fault-slip data sets and estimate the associated reduced stress tensors. A reduced stress tensor consists of the directions of the three principal stress axes with σ1σ2σ3 and the ratio of principal stress differences, R = (σ2σ3)/(σ1σ3).  相似文献   
7.
The presence or absence of a thermally anomalous mantle plume during the formation of the widespread Carboniferous–Permian magmatism of northern Europe is examined. The geochemistry of representative samples from the extensive Carboniferous–Permian dyke and sill intrusions across northern Europe are reported in order to ascertain whether they have a common ‘plume’ source. Both tholeiitic and alkaline magmas have diverse trace element compositions. Alkaline samples with relatively low Ti and Nb/La < 1 are considered to originate in the lithospheric mantle and those with Nb/La > 1 from the asthenosphere. The tholeiites have a close affinity to E-MORB but have mixed with variable amounts of lithosphere and upper crust. Tectonic reorganisation and decompression melting of a trace element-enriched mantle is considered to have controlled the Carboniferous–Permian magmatism, which contains no coherent geochemical evidence for a single plume-related thermo-chemical anomaly.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号