首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   4篇
天文学   1篇
  2008年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1980年   1篇
  1969年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
A synthesis of the majority of the available mare basalt data shows that basalts and glasses came from 28 different volcanic units. The compositions of the magmas of 12 of these units can be calculated with a high degree of confidence. Reasonable estimates can be made for the compositions of nine of the remaining units. In addition, the compositions of three general magma types can be obtained from data derived from the Luna 16, Luna 24, and Apollo 17 fines. The compositional data presented provide a firm basis for the further study of the characteristics of the mare basalt magma source region.  相似文献   
2.
The influence of deep crustal processes on basin formation and evolution and its relation to current morphology is not well understood yet. A key feature to unravel these issues is a detailed seismic image of the crust. A part of the data recorded by the hydrocarbon industry in the late 1970s and 1980s in the North German Basin were released to the public recently. The seismic reflection data were recorded down to 15 s two-way travel time. The mean Common Midpoint fold of about 20 is relatively low compared to contemporary seismic acquisitions. The processing of the 1980s focussed on the sedimentary structures to explore the hydrocarbon potential of this area. We applied the Common Reflection Surface stack technique to the data sets, which is well suited for low-fold data. The reprocessing was focussed on the imaging of the subsedimentary crustal range. The reprocessed images show enhanced reflections, especially in the mid and lower crustal part. Also, the image of the salt structures in the graben area was improved. Furthermore, the reprocessed images indicate an almost flat Moho topography in the area of the Glückstadt Graben and an additional lower crustal structure, which can be correlated with a high-density body found in recent gravity modeling studies.  相似文献   
3.
Kanonaite, with compositions plotting on the join Mn3+AlSiO5–Fe3+AlSiO5, was discovered in a late quartz vein of the Le Coreux metamorphic manganese deposit. A typical structural formula is (Mn3+3.69Fe3+0.36)Al3.95Si4.00O20, representing maximum solid solution within the system Al2SiO5–Mn2SiO5–Fe2SiO5. Refractive indices are =1.777; =1.855. The end-member compositions form the outermost, latest products in zoned crystals ranging to less manganiferous kanonaite. A crystal structure determination of a Mn-rich kanonaite confirms that about 96% of all the Mn3+ present is located in the strongly Jahn-Teller-distorted octahedron of the andalusite-type structure. Combining all relevant mineral-chemical and petrological data available on the deposit, a speculative model is presented in which kanonaite crystals with successively higher Mn3+ contents form during decreasing temperatures in the course of the anticlockwise PTt path of extensional metamorphism. Kaolinite occurring in zones within composite kanonaite porphyroblasts of adjacent phyllites is regarded here as by-product of a continuous retrograde breakdown reaction of less manganiferous kanonaite. In places, kanonaite was peripherally replaced by muscovite and Mn- and Fe-oxides.Editorial responsibility: J. HoefsDedicated to the late Dr. H.S. Yoder, Jr.  相似文献   
4.
5.
In a newly found type of quartz vein cross-cutting the famous "viridine"-bearing phyllites at Le Coreux, hollandite, ideally BaMn8O16, was discovered for the first time at this locality and in Belgium. Because the crystals contain up to 60 mol% of the Sr end member, this is also the second occurrence of strontiomelane. The coexisting "viridine" (= kanonaite) contains the highest amount (88 mol%) of the ideal end member MnAlSiO5 ever found worldwide. The hollandite-type minerals are intimately intergrown with braunite containing appreciable Ca and Mg. Ba-bearing muscovite, Fe-poor excess-Al clinochlore (not quite trioctahedral), and albite are the remaining accessory minerals in the dominant quartz matrix. Microprobe analyses of all phases show rather extreme element fractionations: nearly all K is located in muscovite and none in the hollandite phase despite the existence of the end member KMn8O16 (cryptomelane). Similarly, nearly all Na is in albite and not in hollandite (no NaMn8O16=manjiroite component). Nearly all Mn resides in the two oxide phases and in kanonaite. Mg is strongly fractionated into chlorite. The small amounts of Fe and Ti present are predominantly partitioned into the hollandite phase, which also accommodates most of the Ba and Sr. Indeed, the hollandite phase is stabilized by the latter two elements relative to other Mn oxides. Kanonaite is stabilized by Al. Although no requisite sites are available in its crystal structure, braunite always contains small amounts of Ba and Sr. However, the Sr/(Sr+Ba) ratios in braunite are spurious and unrelated to those of the directly adjoining hollandite phases The conditions of formation of these veins may be well below 300 °C at low pressures (1-2 kbar), in agreement with the experimental results that the maximum Mn contents in kanonaite increase with falling temperatures.  相似文献   
6.
Calcite in former aragonite–dolomite-bearing calc-schists from the ultrahigh-pressure metamorphic (UHPM) oceanic complex at Lago di Cignana, Valtournanche, Italy, preserved different kinds of zoning patterns at calcite grain and phase boundaries. These patterns are interpreted in terms of lattice diffusion and interfacial mass transport linked with a heterogeneous distribution of fluid and its response to a changing state of stress. The succession of events that occurred during exhumation is as follows: As the rocks entered the calcite stability field at T=530–550 °C, P ca. 1.2 GPa, aragonite occurring in the matrix and as inclusions in poikilitic garnet was completely transformed to calcite. Combined evidence from microstructures and digital element distribution maps (Mn-, Mg-, Fe- and Ca–Kα radiation intensity patterns) indicates that transformation rates have been much higher than rates of compositional equilibration of calcite (involving resorption of dolomite and grain boundary transport of Mg, Fe and Ca). This rendered the phase transformation an isochemical process. During subsequent cooling to T ca. 490 °C (where lattice diffusion effectively closed), grains of matrix calcite have developed diffusion-zoned rims, a few hundred micrometres thick, with Mg and Fe increasing and Ca decreasing towards the phase boundary. Composition profiles across concentrically zoned, large grains in geometrically simple surroundings can be successfully modelled with an error function describing diffusion into a semi-infinite medium from a source of constant composition. The diffusion rims in matrix calcite are continuous with quartz, phengite, paragonite and dolomite in the matrix. This points to an effective mass transport on phase boundaries over a distance of several hundred micrometres, if matrix dolomite has supplied the Mg and Fe needed for incorporation in calcite. In contrast, diffusion rims are lacking at calcite–calcite and most calcite–garnet boundaries, implying that only very minor mass transport has occurred on these interfaces over the same Tt interval. From available grain boundary diffusion data and experimentally determined fluid–solid grain boundary structures, inferred large differences in transport rates can be best explained by the discontinuous distribution of aqueous fluid along grain/phase boundaries. Observed patterns of diffusion zoning indicate that fluid was distributed not only along grain-edge channels, but spread out along most calcite–white mica and calcite–quartz two-grain junctions. On the other hand, the inferred non-wetting of calcite grain boundaries in carbonate-rich domains is compatible with fluid–calcite–calcite dihedral angles >60° determined by Holness and Graham (1995) for a wide range of fluid compositions under the PT conditions of interest. Whereas differential stress has been very low at the stage of diffusion zoning (T > 490 °C), it increased as the rocks were cooling below 440 °C (at 0.3–0.5 GPa). Dislocation creep and the concomitant increase of strain energy in matrix calcite induced migration recrystallisation of high-angle grain boundaries. For that stage, the compositional microstructure of recrystallised calcite grain boundary domains indicates significant mass transport along calcite two-grain junctions, which at the established low temperatures is likely to have been accomplished by ionic diffusion within a hydrous grain boundary fluid film (“dynamic wetting” of migrating grain boundaries). Received: 10 January 2000 / Accepted: 10 April 2000  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号