首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   1篇
海洋学   1篇
天文学   1篇
  2020年   1篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The development of an ultra high energy air shower has an intrinsic energy fluctuation due both to the first interaction point and to the cascade development. Here we show that for a given primary energy this fluctuation has a lognormal distribution and thus observations will estimate the primary energy with a lognormal error distribution. We analyze the UHECR energy spectrum convolved with the lognormal energy error and demonstrate that the shape of the error distribution will interfere significantly with the ability to observe features in the spectrum. If the standard deviation of the lognormal error distribution is equal or larger than 0.25, both the shape and the normalization of the measured energy spectra will be modified significantly. As a consequence, the GZK cutoff might be sufficiently smeared as not to be seen (without very high statistics). This result is independent of the power law of the cosmological flux. As a conclusion we show that in order to establish the presence or not of the GZK feature, not only more data are needed but also that the shape of the energy error distribution has to be known well. The high energy tail and the sigma of the approximate lognormal distribution of the error in estimating the energy must be at the minimum set by the physics of showers.  相似文献   
2.
Thin-sheet modelling of lithospheric deformation and surface mass transport   总被引:1,自引:0,他引:1  
We study the effects of incorporating surface mass transport and the gravitational potential energy of both crust and lithospheric mantle to the viscous thin sheet approach. Recent 2D (cross-section) numerical models show that surface erosion and sediment transport can play a major role in shaping the large-scale deformation of the crust. In order to study these effects in 3D (planform view), we develop a numerical model in which both the dynamics of lithospheric deformation and surface processes are fully coupled. Deformation is calculated as a thin viscous layer with a vertically-averaged rheology and subjected to plane stresses. The coupled system of equations for momentum and energy conservation is solved numerically. This model accounts for the isostatic and potential-energy effects due to crustal and lithospheric thickness variations. The results show that the variations of gravitational potential energy due to the lateral changes of the lithosphere–asthenosphere boundary can modify the mode of deformation of the lithosphere. Surface processes, incorporated to the model via a diffusive transport equation, rather than just passively reacting to changes in topography, play an active role in controlling the lateral variations of the effective viscosity and hence of the deformation of the lithosphere.  相似文献   
3.
Fluvial terraces are used as geomorphic indicators for deciphering long-term landscape evolution. Knowing the distribution of fluvial terraces is essential for establishing former river profiles and their tectonic significance, for studying climate-modulated processes of terrace development, or for defining fluvial network adjustments in response to sudden base-level changes like those produced by fluvial captures. Multiple methods for automatic map production have been proposed based on the comparison of morphometric indices with those of the modern river course. Here we propose an alternative method to identify flat surfaces and scarps separating them from digital elevation models without setting comparisons with a modern river course and thus fully applicable to study flat landforms whatever their origin. Its application to the low-relief landscape of the Cenozoic Duero basin has allowed the improvement of previous geomorphological maps and the analysis of fluvial network adjustments in response to a sudden base-level fall after the opening of the Neogene endorheic basin towards the Atlantic Ocean. Reconstructed terrace long-profiles suggest an initial episode of fast vertical incision followed by a period of repeated planation–aggradation–incision with the formation of 14 to 13 unpaired terrace levels. Changes observed in the pattern of terrace profiles are discussed with regard to changes in regional tectonics and base-level variations. © 2019 John Wiley & Sons, Ltd.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号