首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
海洋学   11篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有11条查询结果,搜索用时 109 毫秒
1.
Field studies performed at the Shirshov Institute of Oceanology, Russian Academy of Sciences (SIO RAS), Black Sea hydrophysical polygon in 2012 are illustrated. The variations in the vertical distribution of the hydrophysical characteristics (water temperature, salinity, and density, as well as current velocity) in the upper 200-m layer of the Black Sea above the continental slope in the cold season, obtained using an Aqualog autonomous profiler on a moored buoy station, have been analyzed. It has been established that the position of the permanent pycno-halocline and the hydrosulphuric zone upper boundary intensively oscillate with a characteristic period of 5–10 days. These oscillations cause short-period variations in the thickness of the oxigenated layer by 20–40 m, which reaches one-third of the total thickness of the layer. Measurements performed with autonomous stations (bottom ADCP, thermochain) at the experimental subsatellite polygon in the Gelendzhik coastal zone, as well as meteorological, ship, and satellite data obtained during the catastrophic rains and flooding on July 6–7, 2012, and afterward, have been simultaneously analyzed. It has been established that a catastrophic flow of turbid fresh water into the sea caused the formation of a belt of freshened (by 1.0–2.7 psu) less dense water with a high suspension concentration on the shelf and the upper continental slope. This water formed a quasi-geostrophic northwestward along-shore current, the velocity of which reached 40–50 cm/s. Therefore, the freshened and turbid water mostly escaped from the Gelendzhik region northwestward for two days after the flood, and the remaining water became free of suspension owing to its settlement during approximately the same period. The fields of the current velocity and suspension concentration in a submesoscale cyclonic eddy, identified on the satellite image, were measured at the hydrophysical polygon. It has been established that a high (when compared to the background values) suspension concentration in the surface-water layer in an eddy is related to intense upwelling at the eddy center and the rising of suspension (apparently phytoplankton) from the thermocline layer, where the suspension concentration is maximal.  相似文献   
2.
During cruise 54 of the R/V Akademik Mstislav Keldysh to the southwestern Kara Sea (September 6 to October 7, 2007), a large amount of hydrophysical data with unique spatial resolution was obtained on the basis of measurements using different instruments. The analysis of the data gave us the possibility to study the dynamics and hydrological structure of the southwestern Kara Sea basin. The main elements of the general circulation are the following: the Yamal Current, the Eastern Novaya Zemlya Current, and the St. Anna Trough Current. All these currents are topographically controlled; they flow over the bottom slopes along the isobaths. The Yamal Current begins at the Kara Gates Strait and turns to the east as part of the cyclonic circulation. Then, it turns to the north and propagates along the Yamal coast over the 100-m isobath. The Eastern Novaya Zemlya Current (its core is located over the eastern slope of the Novaya Zemlya Trough) flows to the northeast. Near the northern edge of Novaya Zemlya, it encounters the St. Anna Trough Current, separates from the coast, and flows practically to the east merging with the continuation of the Yamal Current. A strong frontal zone is formed in the region where the two currents merge above the threshold that separates the St. Anna Trough from the Novaya Zemlya Trough and divides the warm and saline Arctic waters from the cooler and fresher waters of the southwestern part of the Kara Sea. This threshold, whose depth does not exceed 100–150 m, is a barrier that prevents the spreading of the Barents Sea and Arctic waters to the southwestern part of the Kara Sea basin through the St. Anna Trough.  相似文献   
3.
The first data on the creation of the subsatellite polygon on the Black Sea shelf and continental slope in the Gelendzhik area (designed in order to permanently monitor the state of the aquatic environment and biota) and the plans for maintaining and developing this polygon are presented. The autonomous measuring systems of the polygon in the composition of bottom stations with acoustic Doppler current profilers (ADCP), Aqualog robotic profilers, and thermo-chains on moored buoy stations should make it possible to regularly obtain hydrophysical, hydrochemical, and bio-optical data with a high spatial-time resolution and transmit these data to the coastal center on a real-time basis. These field data should be used to study the characteristics and formation mechanisms of the marine environment and biota variability, as well as the water-exchange processes in the shelf-deep basin system, ocean-atmosphere coupling, and many other processes. These data are used to calibrate the satellite measurements and verify the water circulation numerical simulation. It is assumed to use these data in order to warn about the hazardous natural phenomena and control the marine environment state and its variation under the action of anthropogenic and natural factors, including climatic trends. It is planned to use the polygon subsatellite monitoring methods and equipment in other coastal areas, including other Black Sea sectors, in order to create a unified system for monitoring the Black Sea shelf-slope zone.  相似文献   
4.
The results of observations of submesoscale eddies (with a diameter of 2–8 km) on the narrow Black Sea shelf are presented. These observations were carried out in the Gelendzhik region in the autumn seasons of 2007–2008 using traditional and new methods of hydrophysical investigations. The mechanisms of generation of such eddies are discussed.  相似文献   
5.
An analysis of the data of measurements of the fine structure and microstructure fluctuations of hydrophysical fields in the upper 200-m layer of the Black Sea carried out using CTD profilers and a Baklan free falling microstructure and turbulence profiler revealed the existence of a positive correlation between the intensity of the fine structure and microstructure fluctuations and the dynamics of the currents. On the other hand, the level of the fine structure and microstructure fluctuations reflects the rate of the vertical turbulent exchange. It was shown that, in the case of the absence of the Black Sea Rim Current (BSRC) jet or clearly manifested mesoscale eddy structures, the vertical turbulent exchange in the pycnocline is weak, while, in the opposite case, it is stronger. The results obtained support the supposition that the interbasin dynamics play an important role in the maintenance of the rate of small-scale mixing in the pycnocline and halocline and provide the vertical transport of dissolved oxygen from the cold intermediate layer into the deeper layers of the sea.  相似文献   
6.
The results of long-term measurements (16 months) of the current??s velocity in the Black Sea coastal zone near Golubaya Bukhta (Blue Bay) by a bottom mounted acoustic Doppler current profiler (ADCP) are presented and discussed. It was found that the alongshore component of the current dominates and its absolute value is an order of magnitude larger than the absolute value of the normal to the shore component. The annual average value of the alongshore current??s velocity is close to zero. A well pronounced oscillatory mode of the alongshore current??s velocity is revealed. This mode is characterized by quasi-periodic changes in the direction of the alongshore current. The maximal amplitudes of the unidirectional alongshore current??s velocity are observed with a time scale from several hours to several days.  相似文献   
7.
8.
9.
10.
Results of the studies of the spatiotemporal variability in the hydrophysical and hydrodynamical structure of the shelf area and its dependence on the water dynamics of the deep-water zone of the Black Sea off Gelendzhik are presented and discussed. The field materials were collected in early October of 2006 with the use of traditional and new measurement techniques. A combined analysis of on-line satellite oceanological information, data of onboard surveys, and data time series of the vertical profiling of the hydrophysical characteristics at a moored buoy station was performed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号