首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
地质学   10篇
海洋学   8篇
自然地理   3篇
  2023年   1篇
  2020年   1篇
  2019年   2篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
排序方式: 共有21条查询结果,搜索用时 31 毫秒
1.
Seismic, sidescan sonar, bathymetric multibeam and ODP (Ocean Drilling Program) data obtained in the submarine channel between the volcanic islands of Gran Canaria and Tenerife allow to identify constructive features and destructive events during the evolution of both islands. The most prominent constructive features are the submarine island flanks being the acoustic basement of the seismic images. The build-up of Tenerife started following the submarine stage of Gran Canaria because the submarine island flank of Tenerife onlaps the steeper flank of Gran Canaria. The overlying sediments in the channel between Gran Canaria and Tenerife are chaotic, consisting of slumps, debris flow deposits, syn-ignimbrite turbidites, ash layers, and other volcaniclastic rocks generated by eruptions, erosion, and flank collapse of the volcanoes. Volcanic cones on the submarine island flanks reflect ongoing submarine volcanic activity. The construction of the islands is interrupted by large destructive events, especially by flank collapses resulting in giant landslides. Several Miocene flank collapses (e.g., the formation of the Horgazales basin) were identified by combining seismic and drilling data whereas young giant landslides (e.g., the Güimar debris avalanche) are documented by sidescan, bathymetric and drilling data. Sediments are also transported through numerous submarine canyons from the islands into the volcaniclastic apron. Seismic profiles across the channel do not show a major offset of reflectors. The existence of a repeatedly postulated major NE-SW-trending fault zone between Gran Canaria and Tenerife is thus in doubt. The sporadic earthquake activity in this area may be related to the regional stress field or the submarine volcanic activity in this area. Seismic reflectors cannot be correlated through the channel between the sedimentary basins north and south of Gran Canaria because the channel acts as sediment barrier. The sedimentary basins to the north and south evolved differently following the submarine growth of Gran Canaria and Tenerife in the Miocene.  相似文献   
2.
Lake Van is the fourth largest terminal lake in the world (volume 607 km3, area 3570 km2, maximum depth 460 m), extending for 130 km WSW–ENE on the Eastern Anatolian High Plateau, Turkey. The sedimentary record of Lake Van, partly laminated, has the potential to obtain a long and continuous continental sequence that covers several glacial–interglacial cycles (ca 500 kyr). Therefore, Lake Van is a key site within the International Continental Scientific Drilling Program (ICDP) for the investigation of the Quaternary climate evolution in the Near East (‘PALEOVAN’). As preparation for an ICDP drilling campaign, a site survey was carried out during the past years. We collected 50 seismic profiles with a total length of ~850 km to identify continuous undisturbed sedimentary sequences for potential ICDP locations. Based on the seismic results, we cored 10 different locations to water depths of up to 420 m. Multidisciplinary scientific work at positions of a proposed ICDP drill site included measurements of magnetic susceptibility, physical properties, stable isotopes, XRF scans, and pollen and spores. This core extends back to the Last Glacial Maximum (LGM), a more extended record than all the other Lake Van cores obtained to date. Both coring and seismic data do not show any indication that the deepest part of the lake (Tatvan Basin, Ahlat Ridge) was dry or almost dry during past times. These results show potential for obtaining a continuous undisturbed, long continental palaeoclimate record. In addition, this paper discusses the potential of ‘PALEOVAN’ to establish new results on the dynamics of lake level fluctuations, noble gas concentration in pore water of the lake sediment, history of volcanism and volcanic activities based on tephrostratigraphy, and paleoseismic and earthquake activities.  相似文献   
3.
Lake Ohrid, located on the Balkan Peninsula within the Dinaride–Albanide–Hellenide mountain belt, is a tectonically active graben within the South Balkan Extensional Regime (SBER). Interpretation of multichannel seismic cross sections and bathymetric data reveals that Lake Ohrid formed during two main phases of deformation: (1) a transtensional phase which opened a pull‐apart basin, and (2) an extensional phase which led to the present geometry of Lake Ohrid. After the initial opening, a symmetrical graben formed during the Late Miocene, bounded by major normal faults on each side in a pull‐apart type basin. The early‐stage geometry of the basin has a typical rhomboidal shape restricted by two sets of major normal faults. Thick undisturbed sediments are present today at the site where the acoustic basement is deepest, illustrating that Lake Ohrid is a potential target for drilling a long and continuous sediment core for studying environmental changes within the Mediterranean region. Neotectonic activity since the Pliocene takes place along the roughly N–S‐striking Eastern and Western Major Boundary Normal Faults that are partly exposed at the present lake floor. The tectono‐sedimentary structure of the basin is divided into three main seismic units overlying the acoustic basement associated with fluvial deposits and lacustrine sediments. A seismic facies analysis reveals a prominent cyclic pattern of high‐ and low‐amplitude reflectors. We correlate this facies cyclicity with vegetation changes within the surrounding area that are associated with glacial/interglacial cycles. A clear correlation is possible back to ca. 450 kyrs. Extrapolation of average sedimentation rates for the above mentioned period results in age estimate of ca. 2 Myrs for the oldest sediments in Lake Ohrid.  相似文献   
4.
5.
Rihm  Jacobs  Krastel  Schmincke  & Alibes 《地学学报》1998,10(3):121-125
Volcanic structures on the seafloor off the NW African coast between 25°N and 32°N were imaged by GLORIA side scan sonar and SIMRAD EM12 multibeam bathymetry. The newly discovered Las Hijas Seamounts, located 70 km south-east of Hierro, are interpreted as young volcanic edifices. Their location is consistent with the spacing and timing of propagation of volcanism of the Canary Archipelago and may represent future sites of volcanic islands.  相似文献   
6.
7.
Tunnel valleys are assumed to form near the margin of ice sheets. Hence, they can be used to reconstruct the dynamics of former ice margins. The detailed formation and infill of tunnel valleys, however, are still not well understood. Here, we present a dense grid of high-resolution 2D multi-channel reflection seismic data from the German sector of the southeastern North Sea imaging tunnel valleys in very great detail. Three tunnel valley systems were traced over distances ranging between 11 and 21 km. All tunnel valleys are completely filled and buried. They differ in incision depth, incision width and number of incisions. The tunnel valleys cut 130–380 m deep into Neogene, Palaeogene and Cretaceous sediments; they show a lower V-shaped and an upper U-shaped morphology. For individual tunnel valleys, the overall incision direction ranges from east–west to northeast–southwest. Two tunnel valleys intersect at an oblique angle without reuse of the thalweg. These valleys incise into a pre-existing glaciotectonic complex consisting of thrust sheets in the northwest of the study area. The analysis of the glaciotectonic complex and the tunnel valleys leads us to assume that we identified several marginal positions of (pre-)Elsterian ice lobes in the southeastern North Sea.  相似文献   
8.
Determining factors that limit coseismic rupture is important to evaluate the hazard of powerful subduction zone earthquakes such as the 2011 Tohoku‐Oki event (Mw = 9.0). In 1960 (Mw = 9.5) and 2010 (Mw = 8.8), Chile was hit by such powerful earthquakes, the boundary of which was the site of a giant submarine slope failure with chaotic debris subducted to seismogenic zone depth. Here, a continuous décollement is absent, whereas away from the slope failure, a continuous décollement is seismically imaged. We infer that underthrusting of inhomogeneous slide deposits prevents the development of a décollement, and thus the formation of a thin continuous slip zone necessary for earthquake rupture propagation. Thus, coseismic rupture during the 1960 and 2010 earthquakes seems to be limited by underthrusted upper plate mass‐wasting deposits. More generally, our results suggest that upper plate dynamics and resulting surface processes can play a key role for determining rupture size of subduction zone earthquakes.  相似文献   
9.
This paper presents results of a multi-channel seismic reflection survey at Lake Van and provides constraints on the sedimentary evolution of the lake. The geophysical data of the lake confirm the existence of three physiographic provinces: a shelf, a slope, and a deep, relatively flat basin. The most prominent features identified on the shelf and slope are clinoforms, submerged channels, as well as closely spaced lake floor depressions, reflecting a highly variable lake-level history. The morphological depressions are interpreted as resulting from subaquatic erosion by channelized, sediment-laden currents into horizontally bedded fan sediments. Submerged channels on the eastern shelf are interpreted as meandering-slope channels, probably as a consequence of a lake-level fall that exposed the shelf area. Clinoforms on the Eastern fan may represent relict deltas formed during stationary or slightly rising lake-level intervals. Merging subsurface imaging interpretation with morphological studies of exposed sediments reveals lake-level fluctuations of several hundreds of meters during the past ca. ~550 ka. The lake has three prominent basins (Tatvan, Deveboynu, and the Northern basin) separated by basement ridges (e.g., the Northern ridge). The seismic units in the Tatvan and Northern basins are dominated by alternations of well-stratified and chaotic reflections, while the Deveboynu basin subsurface consists mainly of chaotic units. The chaotic seismic facies are interpreted as mass-flow deposits, probably triggered by earthquakes and/or rapid lake-level fluctuations. The moderate-to-high-amplitude, well-stratified facies seen in the deeper parts of the basins are interpreted as lacustrine deposits intercalated with tephra layers. The occurrence of a clinoform in the deepest part of the lake suggests a major flooding stage of Lake Van more than ~400 ka ago. Seismic profiles from the deepest part of the lake basin show remarkably uniform and continuous stratigraphic units without any major erosional feature following the flooding event, indicating that the lake was never completely dry afterward and therefore significantly older than previously suggested.  相似文献   
10.
A multi‐channel, high‐resolution seismic reflection survey using a Micro‐GI airgun was carried out in the framework of the Russian‐German project PLOT (Paleolimnological Transect) on Lake Levinson‐Lessing, Taymyr Peninsula, in 2016. In total, ~70 km of seismic reflection profiles revealed in unprecedented detail the glacial and postglacial sedimentary infill of the lake basin. Five main seismic units have been recognized and interpreted as glacial (Unit V), subglacial and proglacial (Unit IV), marine (Unit III), fluvial‐lacustrine (Unit II) and lacustrine (Unit I) sediments. Of particular significance are imbricated, south‐orientated structures present in the southernmost part of the lake basin within Unit V and a large topographic ridge recognized in front of those structures. We interpret these structures as push moraines and an end moraine, respectively, left by the glacier after its retreat. The depositional pattern of the units above the moraines documents past lake‐level fluctuations. We interpret Unit IV, Unit III and Unit I as highstand deposits, and Unit II as lowstand deposits. Gas‐charged sediments dominate the northern part of the lake basin, whilst they occur only sporadically and in limited spatial extent in the central and southern parts of the lake. In the latter areas, the seismic and echo‐sounder data suggest recent tectonic activity. Our study contributes to the reconstruction of environmental conditions in the Taymyr Peninsula directly following the Early Weichselian deglaciation and shows that deep tectonic lake basins affected by several glaciations can preserve important palaeoenvironmental records, which contributes significantly to our understanding of palaeoenvironmental changes in the Taymyr Peninsula and the central Russian Arctic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号