首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
地球物理   16篇
地质学   1篇
海洋学   3篇
自然地理   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   3篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2001年   1篇
排序方式: 共有23条查询结果,搜索用时 853 毫秒
1.
2.
Surface displacements and gravity changes due to volcanic sources are influenced by medium properties. We investigate topographic, elastic and self-gravitation interaction in order to outline the major factors that are significant in data modelling. While elastic-gravitational models can provide a suitable approximation to problems of volcanic loading in areas where topographic relief is negligible, for prominent volcanoes the rough topography could affect deformation and gravity changes to a greater extent than self-gravitation. This fact requires the selection, depending on local relief, of a suitable model for use in the interpretation of surface precursors of volcanic activity. We use the three-dimensional Indirect Boundary Element Method to examine the effects of topography on deformation and gravity changes in models of magma chamber inflation/deflation. Topography has a significant effect on predicted surface deformation and gravity changes. Both the magnitude and pattern of the geodetic signals are significantly different compared to half-space solutions. Thus, failure to account for topographic effects in areas of prominent relief can bias the estimate of volcanic source parameters, since the magnitude and pattern of deformation and gravity changes depend on such effects.  相似文献   
3.
4.
Excessive macrophytes can cause significant problems in agricultural waterways requiring active management. Conventional control techniques can have a range of adverse effects. We investigated several control tools in two experiments: firstly, we tested eight treatments at a small-scale (2?m?×?2?m). We found intensive hand weeding, weed mat and herbicide spraying to be effective treatments, reducing macrophyte cover to <5%. Hand weeding and weed mat immediately reduced cover, while dieback from herbicide took two months. Weed mat was a novel and effective control mechanism along stream banks. Secondly, we tested the impact of shading on macrophyte growth. Macrophyte growth was enhanced under partially shaded conditions, but with 80% effective shading over the entire channel, cover was reduced to 17%. Once treatments ceased, macrophytes grew back within 3–5 months. Long-term, control methods will require combinations of tools but will need to include optimal shading for the target species.  相似文献   
5.
In this paper, the extent to which some improvement can be made in seismicity-based earthquake forecasting methods are examined. Two methods that employ the statistics and locations for past smaller earthquakes to determine the location of future large earthquakes, the pattern informatics (PI) index and the Benioff relative intensity (RI), are employed for both global and regional forecasting. Two approaches for forecast parameter estimation, the TM metric and threshold optimization, are applied to these methods and the results evaluated. Application of the TM metric allows for estimation of both the training and forecast time intervals as well as the minimum magnitude cutoff and spatial discretization. The threshold optimization scheme is employed in order to formulate a binary forecast that maximizes the Pierce’s skill score. The combined application of these techniques is successful in forecasting those large events that occurred in Haiti, Chile, and California in 2010, on both global and regional scales.  相似文献   
6.
The objective of this paper is to quantify the use of past seismicity to forecast the locations of future large earthquakes and introduce optimization methods for the model parameters. To achieve this the binary forecast approach is used where the surface of the Earth is divided into l° × l° cells. The cumulative Benioff strain of m ≥ m c earthquakes that occurred during the training period, ΔT tr, is used to retrospectively forecast the locations of large target earthquakes with magnitudes ≥m T during the forecast period, ΔT for. The success of a forecast is measured in terms of hit rates (fraction of earthquakes forecast) and false alarm rates (fraction of alarms that do not forecast earthquakes). This binary forecast approach is quantified using a receiver operating characteristic diagram and an error diagram. An optimal forecast can be obtained by taking the maximum value of Pierce’s skill score.  相似文献   
7.
In weather forecasting, current and past observational data are routinely assimilated into numerical simulations to produce ensemble forecasts of future events in a process termed “model steering”. Here we describe a similar approach that is motivated by analyses of previous forecasts of the Working Group on California Earthquake Probabilities (WGCEP). Our approach is adapted to the problem of earthquake forecasting using topologically realistic numerical simulations for the strike-slip fault system in California. By systematically comparing simulation data to observed paleoseismic data, a series of spatial probability density functions (PDFs) can be computed that describe the probable locations of future large earthquakes. We develop this approach and show examples of PDFs associated with magnitude M > 6.5 and M > 7.0 earthquakes in California.  相似文献   
8.
This paper presents a framework and data for spatially distributed assessment of tsunami inundation models. Our associated validation test is based upon the 2004 Indian Ocean tsunami, which affords a uniquely large amount of observational data for events of this kind. Specifically, we use eyewitness accounts to assess onshore flow depths and speeds as well as a detailed inundation survey of Patong City, Thailand to compare modelled and observed inundation. Model predictions matched well the detailed inundation survey as well as altimetry data from the JASON satellite, eyewitness accounts of wave front arrival times and onshore flow speeds. Important buildings and other structures were incorporated into the underlying elevation model and are shown to have a large influence on inundation extent.  相似文献   
9.
In this work, we provide a joint study of the stress accumulation method (SAM) (King and Bowman, 2003) and the Pattern Informatics (PI) index (Tiampo et al., 2002b). We examine the theoretical underpinnings for the similarities between the two techniques, as well as the differences in their application. The SAM technique is employed to determine likely mechanisms for smaller areas of increased probability identified by the PI index, while a modified version of the PI index can be used to locate regions where the smaller magnitude associated with the anomaly is below the resolution of the SAM. Finally, we present three case studies from different regions of the San Andreas fault system to illustrate both their complementary nature, as well as the advantages to combining them in one synthesized analysis.  相似文献   
10.
Extreme precipitation can have profound consequences for communities, resulting in natural hazards such as rainfall-triggered landslides that cause casualties and extensive property damage. A key challenge to understanding and predicting rainfall-triggered landslides comes from observational uncertainties in the depth and intensity of precipitation preceding the event. Practitioners and researchers must select from a wide range of precipitation products, often with little guidance. Here we evaluate the degree of precipitation uncertainty across multiple precipitation products for a large set of landslide-triggering storm events and investigate the impact of these uncertainties on predicted landslide probability using published intensity–duration thresholds. The average intensity, peak intensity, duration, and NOAA-Atlas return periods are compared ahead of 177 reported landslides across the continental United States and Canada. Precipitation data are taken from four products that cover disparate measurement methods: near real-time and post-processed satellite (IMERG), radar (MRMS), and gauge-based (NLDAS-2). Landslide-triggering precipitation was found to vary widely across precipitation products with the depth of individual storm events diverging by as much as 296 mm with an average range of 51 mm. Peak intensity measurements, which are typically influential in triggering landslides, were also highly variable with an average range of 7.8 mm/h and as much as 57 mm/h. The two products more reliant upon ground-based observations (MRMS and NLDAS-2) performed better at identifying landslides according to published intensity–duration storm thresholds, but all products exhibited hit ratios of greater than 0.56. A greater proportion of landslides were predicted when including only manually verified landslide locations. We recommend practitioners consider low-latency products like MRMS for investigating landslides, given their near-real time data availability and good performance in detecting landslides. Practitioners would be well-served considering more than one product as a way to confirm intense storm signals and minimize the influence of noise and false alarms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号