首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
测绘学   3篇
地球物理   3篇
地质学   11篇
自然地理   2篇
  2015年   1篇
  2011年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1982年   3篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
Partial melting of subducted oceanic crust has been identifiedin the Sierra del Convento mélange (Cuba). This serpentinite-matrixmélange contains blocks of mid-ocean ridge basalt (MORB)-derivedplagioclase-lacking epidote ± garnet amphibolite intimatelyassociated with peraluminous trondhjemitic–tonalitic rocks.Field relations, major element bulk-rock compositions, mineralassemblages, peak metamorphic conditions (c. 750°C, 14–16kbar), experimental evidence, and theoretical phase relationssupport formation of the trondhjemitic–tonalitic rocksby wet melting of subducted amphibolites. Phase relations andmass-balance calculations indicate eutectic- and peritectic-likemelting reactions characterized by large stoichiometric coefficientsof reactant plagioclase and suggest that this phase was completelyconsumed upon melting. The magmatic assemblages of the trondhjemitic–tonaliticmelts, consisting of plagioclase, quartz, epidote, ±paragonite, ± pargasite, and ± kyanite, crystallizedat depth (14–15 kbar). The peraluminous composition ofthe melts is consistent with experimental evidence, explainsthe presence of magmatic paragonite and (relict) kyanite, andplaces important constraints on the interpretation of slab-derivedmagmatic rocks. Calculated P–T conditions indicate counterclockwiseP–T paths during exhumation, when retrograde blueschist-faciesoverprints, composed of combinations of omphacite, glaucophane,actinolite, tremolite, paragonite, lawsonite, albite, (clino)zoisite,chlorite, pumpellyite and phengite, were formed in the amphibolitesand trondhjemites. Partial melting of subducted oceanic crustin eastern Cuba is unique in the Caribbean realm and has importantconsequences for the plate-tectonic interpretation of the region,as it supports a scenario of onset of subduction of a youngoceanic lithosphere during the early Cretaceous (c. 120 Ma).The counterclockwise P–T paths were caused by ensuingexhumation during continued subduction. KEY WORDS: amphibolite; Cuba; exhumation; partial melting; trondhjemite; subduction  相似文献   
2.
3.
4.
5.
6.
The southern East Uralian Zone consists of granite-gneiss complexes that are embedded in geological units with typical oceanic characteristics. These gneisses have been interpreted as parts of a microcontinent that collided during the Uralian orogeny. The gneiss-plate of Kartali forms the south eastern part of the gneiss mantle surrounding the Dzhabyk pluton. Its post-collisional protolith age of 327±4 Ma is inconsistent with the microcontinent model. The deformation of the gneisses took place in 290±4 Ma at the time of the intrusion of the Dzhabyk magmas. Granites and gneisses cooled and were exhumed together. Therefore, we interpret the gneiss complexes of the East Uralian Zone as marginal parts of the granitic batholiths that were deformed during the ascent and emplacement of the pluton. From Nd and Sr isotope constraints we conclude that the magma source of the gneiss protolith was an island arc. Since no evidence for old continental crust has been discovered in the East Uralian Zone, the Uralian orogeny can no longer be interpreted as a continent-island arc-microcontinent collision. Instead, the geochemical data presented within this paper indicate that the stacking and thrusting of island arc complexes played an important role in the Uralian orogeny.  相似文献   
7.
Gravity recovery and climate experiment (GRACE)-derived temporal gravity variations can be resolved within the μgal (10?8 m/s 2) range, if we restrict the spatial resolution to a half-wavelength of about 1,500 km and the temporal resolution to 1 month. For independent validations, a comparison with ground gravity measurements is of fundamental interest. For this purpose, data from selected superconducting gravimeter (SG) stations forming the Global Geodynamics Project (GGP) network are used. For comparison, GRACE and SG data sets are reduced for the same known gravity effects due to Earth and ocean tides, pole tide and atmosphere. In contrast to GRACE, the SG also measures gravity changes due to load-induced height variations, whereas the satellite-derived models do not contain this effect. For a solid spherical harmonic decomposition of the gravity field, this load effect can be modelled using degree-dependent load Love numbers, and this effect is added to the satellite-derived models. After reduction of the known gravity effects from both data sets, the remaining part can mainly be assumed to represent mass changes in terrestrial water storage. Therefore, gravity variations derived from global hydrological models are applied to verify the SG and GRACE results. Conversely, the hydrology models can be checked by gravity variations determined from GRACE and SG observations. Such a comparison shows quite a good agreement between gravity variation derived from SG, GRACE and hydrology models, which lie within their estimated error limits for most of the studied SG locations. It is shown that the SG gravity variations (point measurements) are representative for a large area within the accuracy, if local gravity effects are removed. The individual discrepancies between SG, GRACE and hydrology models may give hints for further investigations of each data series.  相似文献   
8.
9.
桐柏─大别造山带经历了两阶段的伸展作用。早阶段伸展形成了局限海,并且形成了桐柏─大别山变质核杂岩的雏形。二郎坪岩群、龟山岩组、南湾岩组沉积在局限海中,沉积层序表现为从北向南的迁移。宽坪岩群和二郎坪岩群以低压高温的拉张变质作用为特征。晚期伸展对桐柏─大别山变质核杂岩的最后成型起着重要作用,并产生了中生代的花岗岩侵入和混合岩化。  相似文献   
10.
The Urals are characterized by a depression of the Moho to a depth of 57 km. This structure is interpreted as a relic orogenic root, which has been conserved because no significant post-collisional processes occurred. However, there is evidence that voluminous post-collisional magmatism affected the lower crust. In this paper, we use thermal finite element models to quantify the influence of the post-collisional magmatism on the stabilization of the root. We show that at least 70% of the heat producing elements migrated in granitic melts from the lower crust to the upper crust. As a result the crustal heat flow reduced and the lithosphere could stabilize at a thickness of 180 km. Furthermore, we propose that a granulite metamorphic event during the thermal relaxation of the collision zone prevented the 57 km thick crust from delamination. These results strongly indicate that post-collisional processes were necessary for the stabilization of the Uralian crust and lithosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号