首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   4篇
  国内免费   1篇
测绘学   3篇
大气科学   21篇
地球物理   29篇
地质学   39篇
海洋学   21篇
天文学   28篇
自然地理   22篇
  2020年   5篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   3篇
  2013年   16篇
  2012年   3篇
  2011年   6篇
  2010年   9篇
  2009年   9篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   3篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1964年   1篇
  1962年   2篇
排序方式: 共有163条查询结果,搜索用时 15 毫秒
1.
2.
3.
We examined particle size distributions of suspended particulate matter (SPM); physical and environmental influences on the observed distributions; and relationships between particle size and geochemical partitioning of metals, over the fall and winter period in a small urban river (Don River, Toronto, Ontario, Canada). For this dataset, the majority of particles (80%) in suspension were less than 10 µm in size. In addition, while total SPM concentrations showed a positive trend with increasing discharge (Q); the proportions of particles found within given size classes were independent of both SPM concentration and Q. Temperature was the only measured environmental variable related to the particle concentrations within size classes. As water temperature increased, the concentration of particles in the smallest size class (1–4 µm) decreased, while the concentration of silt and/or algae sized particles (10–50 µm) increased. Increasing water temperatures may promote bacterial attachment to particles and their subsequent flocculation into larger sized particles. Decreasing concentrations of leachable (most labile) Cd, Zn and Mn were associated with increasing concentrations of the largest particles (70–150 µm) in suspension. In contrast, higher reducible (oxides) associated concentrations of Cd, Zn and Mn occurred with increasing concentrations of smaller particles (1–10 µm) in suspension. Both of these trends are speculated to reflect the importance of particle surface area for metal sorption reactions.  相似文献   
4.
Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1–0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1–0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.  相似文献   
5.
Lava flows of the Ninole Basalt, the oldest rocks exposed on the south side of the island of Hawaii, provide age and compositional constraints on the evolution of Mauna Loa volcano and the southeastward age progression of Hawaiian volcanism. Although the tholeiitic Ninole Basalt differs from historic lavas of Mauna Loa volcano in most major-element contents (e.g., variably lower K, Na, Si; higher Al, Fe, Ti, Ca), REE and other relatively immobile minor elements are similar to historic and prehistoric Mauna Loa lavas, and the present major-element differences are mainly due to incipient weathering in the tropical environment. New K-Ar whole-rock ages, from relatively fresh roadcut samples, suggest that the age of the Ninole Basalt is approximately 0.1–0.2 Ma, although resolution is poor because of low contents of K and radiogenic Ar. Originally considered the remnants of a separate volcano, the Ninole Hills are here interpreted as faulted remnants of the old south flank of Mauna Loa. Deep canyons in the Ninole Hills, eroded after massive landslide failure of flanks of the southwest rift zone, have been preserved from burial by younger lava due to westward migration of the rift zone. Landslide-induced depressurization of the southwest rift zone may also have induced phreatomagmatic eruptions that could have deposited widespread Basaltic ash that overlies the Ninole Basalt. Subaerial presence of the Ninole Basalt documents that the southern part of Hawaii Island had grown to much of its present size above sea level by 0.1–0.2 Ma, and places significant limits on subsequent enlargement of the south flank of Mauna Loa.  相似文献   
6.
7.
 Samples of basalt were collected during the Rapid Response cruise to Loihi seamount from a breccia that was probably created by the July to August 1996 Loihi earthquake swarm, the largest swarm ever recorded from a Hawaiian volcano. 210Po–210Pb dating of two fresh lava blocks from this breccia indicates that they were erupted during the first half of 1996, making this the first documented historical eruption of Loihi. Sonobuoys deployed during the August 1996 cruise recorded popping noises north of the breccia site, indicating that the eruption may have been continuing during the swarm. All of the breccia lava fragments are tholeiitic, like the vast majority of Loihi's most recent lavas. Reverse zoning at the rim of clinopyroxene phenocrysts, and the presence of two chemically distinct olivine phenocryst populations, indicate that the magma for the lavas was mixed just prior to eruption. The trace element geochemistry of these lavas indicates there has been a reversal in Loihi's temporal geochemical trend. Although the new Loihi lavas are similar isotopically and geochemically to recent Kilauea lavas and the mantle conduits for these two volcanoes appear to converge at depth, distinct trace element ratios for their recent lavas preclude common parental magmas for these two active volcanoes. The mineralogy of Loihi's recent tholeiitic lavas signify that they crystallized at moderate depths (∼8–9 km) within the volcano, which is approximately 1 km below the hypocenters for earthquakes from the 1996 swarm. Taken together, the petrological and seismic evidence indicates that Loihi's current magma chamber is considerably deeper than the shallow magma chamber (∼3–4 km) in the adjoining active shield volcanoes. Received: 21 August 1997 / Accepted: 15 February 1998  相似文献   
8.
The technique of multivariate analysis was used to investigate the geochemical relationships between the felsic rocks of the Bushveld Complex. The Bushveld granite and Rooiberg felsite form two distinct geochemical groups based on their major element compositions, possibly indicating that they originated from separate and genetically unrelated magmas. A discriminant function based on six major oxides was found to be 90 percent effective in distinguishing between the two groups. These conclusions have important implications for the petrogenesis of the Bushveld Complex.  相似文献   
9.
Charge Transfer Inefficiency (CTI) due to radiation damage above the Earth's atmosphere creates spurious trailing in Hubble Space Telescope ( HST ) images. Radiation damage also creates unrelated warm pixels – but these happen to be perfect for measuring CTI. We model CTI in the Advanced Camera for Surveys (ACS)/Wide Field Channel and construct a physically motivated correction scheme. This operates on raw data, rather than secondary science products, by returning individual electrons to pixels from which they were unintentionally dragged during readout. We apply our correction to images from the HST Cosmic Evolution Survey (COSMOS), successfully reducing the CTI trails by a factor of ∼30 everywhere in the CCD and at all flux levels. We quantify changes in galaxy photometry, astrometry and shape. The remarkable 97 per cent level of correction is more than sufficient to enable a (forthcoming) reanalysis of downstream science products and the collection of larger surveys.  相似文献   
10.
This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone damages under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 478 estimates of the temperature-damage relationship from nineteen studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5 °C increase in global surface air temperature would cause hurricane damages to increase by 63 %. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are +28 % and +23 %, respectively. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号