首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
测绘学   1篇
地球物理   5篇
地质学   4篇
海洋学   6篇
自然地理   2篇
  2017年   1篇
  2013年   1篇
  2011年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1974年   1篇
排序方式: 共有18条查询结果,搜索用时 468 毫秒
1.
Abstract. The utilization of the spatial resources of refuge type, size and depth placement is investigated in the three sympatric species of Acanthemblemaria at the cape region of Baja California, Mexico. A. balanorum occupies barnacle testes (Balanus tintinnabulum), A. macrospilus occupies barnacles and mollusk tubes (vermetid gastropods and pholadids), and A. crockeri occupies only mollusk tubes (pholadids). Refuge diameter overlap is higher than overlap in depth. A. crockeri consistently occupies depths below 5m. Competition experiments for barnacle refuges among the three species indicate that A. balanorum is a superior competitor for such refuges. Prior residency of a less superior species changes the outcome of refuge competition in its favor. The morphological specialization of A. balanorum and A. macrospilus is evident in a high correlation between head size and standard length. A. balanorum selects refuges with entrance diameters highly correlated to standard length.  相似文献   
2.
Improved network flow models require the incorporation of increasingly accurate geometrical characterization of the microscale pore structure as well as greater information on fluid–fluid interaction (interfaces) at pore scales. We report on three dimensional (3D) pore scale medium characterization, absolute permeability computations for throat structures, and pore scale residual fluid distribution in a Berea core. X-ray computed microtomography combined with X-ray attenuating dopants is used to obtain 3D images of the pore network and to resolve phase distributions in the pore space.  相似文献   
3.
Abstract. The diets of three syntopic Gulf of California Acanthemblemaria (A. balanorum, A. crock-eri and A. macrospilus) and A. castroi from the Galapagos Island are nearly uniformly composed of harpacticoid copepods and other small benthic-vagile or planktonic crustaceans. On occasion, large prey items such as crabs or other small fishes are taken. HORN'S index of niche overlap indicates that the three syntopic Acanthemblemaria are not separated along the food resource utilization axis. Slight variations in diets among the syntopic species seem to be related to differences in degree of microhabitat specialization.  相似文献   
4.
Top-down effects of predators and bottom-up effects related to resource availability can be important in determining community structure and function through both direct and indirect processes. Their relative influence may vary among habitats. We examined the effects of nutrient enhancement and predation in southeastern North Carolina to determine relative effects on benthic macrofaunal communities. Short-term nutrient additions and predator exclusions were conducted in two estuaries to examine main and interactive effects on benthic microalgae and infauna. This experimental approach was complemented by comparisons of microalgal biomass, infaunal abundance and composition, predator abundance and predator exclusion among four estuarine systems that varied in background nutrient levels. In the short-term experiments, nutrient enhancement induced increased microalgal biomass but had limited effects on abundances or sizes of infauna. Predator exclusion increased the density of sedentary and near-surface dwelling fauna, but we did not observe interactions between predation and responses to nutrient additions as might be predicted from a simple cascade model. General patterns of abundance were explained to a larger extent by interannual and amongestuary pattems. These results indicate a lack of simple trophic cascade responses for this community over a short time scale and little evidence for local interactive effects. The lack of interactive effects may reflect the opportunistic nature of the dominant infaunal species and potentially different time and spatial scales for the effects of predation and resource controls.  相似文献   
5.
Monitoring loss of humid tropical forests via remotely sensed imagery is critical for a number of environmental monitoring objectives, including carbon accounting, biodiversity, and climate modeling science applications. Landsat imagery, provided free of charge by the U.S. Geological Survey Center for Earth Resources Observation and Science (USGS/EROS), enables consistent and timely forest cover loss updates from regional to biome scales. The Indonesian islands of Sumatra and Kalimantan are a center of significant forest cover change within the humid tropics with implications for carbon dynamics, biodiversity maintenance and local livelihoods. Sumatra and Kalimantan feature poor observational coverage compared to other centers of humid tropical forest change, such as Mato Grosso, Brazil, due to the lack of ongoing acquisitions from nearby ground stations and the persistence of cloud cover obscuring the land surface. At the same time, forest change in Indonesia is transient and does not always result in deforestation, as cleared forests are rapidly replaced by timber plantations and oil palm estates. Epochal composites, where single best observations are selected over a given time interval and used to quantify change, are one option for monitoring forest change in cloudy regions. However, the frequency of forest cover change in Indonesia confounds the ability of image composite pairs to quantify all change. Transient change occurring between composite periods is often missed and the length of time required for creating a cloud-free composite often obscures change occurring within the composite period itself. In this paper, we analyzed all Landsat 7 imagery with <50% cloud cover and data and products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify forest cover loss for Sumatra and Kalimantan from 2000 to 2005. We demonstrated that time-series approaches examining all good land observations are more accurate in mapping forest cover change in Indonesia than change maps based on image composites. Unlike other time-series analyses employing observations with a consistent periodicity, our study area was characterized by highly unequal observation counts and frequencies due to persistent cloud cover, scan line corrector off (SLC-off) gaps, and the absence of a complete archive. Our method accounts for this variation by generating a generic variable space. We evaluated our results against an independent probability sample-based estimate of gross forest cover loss and expert mapped gross forest cover loss at 64 sample sites. The mapped gross forest cover loss for Sumatra and Kalimantan was 2.86% of the land area, or 2.86 Mha from 2000 to 2005, with the highest concentration having occurred in Riau and Kalimantan Tengah provinces.  相似文献   
6.
7.
8.
Generous statistical tests   总被引:1,自引:1,他引:0  
A common statistical problem is deciding which of two possible sources, A and B, of a contaminant is most likely the actual source. The situation considered here, based on an actual problem of polychlorinated biphenyl contamination discussed below, is one in which the data strongly supports the hypothesis that source A is responsible. The problem approach here is twofold: One, accurately estimating this extreme probability. Two, since the statistics involved will be used in a legal setting, estimating the extreme probability in such a way as to be as generous as is possible toward the defendant’s claim that the other site B could be responsible; thereby leaving little room for argument when this assertion is shown to be highly unlikely. The statistical testing for this problem is modeled by random variables {X i } and the corresponding sample mean the problem considered is providing a bound ɛ for which for a given number a 0. Under the hypothesis that the random variables {X i } satisfy E(X i ) ≤ μ, for some 0  < μ < 1, statistical tests are given, described as “generous”, because ɛ is maximized. The intent is to be able to reject the hypothesis that a 0 is a value of the sample mean while eliminating any possible objections to the model distributions chosen for the {X i } by choosing those distributions which maximize the value of ɛ for the test used.  相似文献   
9.
10.
Nutrient additions represent an important anthropogenic stress on coastal ecosystems. At moderate levels, increased nutrients may lead to increased primary production and, possibly, to increased biomass of consumers although complex trophic interactions may modify or mask these effects. We examined the influence of nutrient additions and interactive effects of trophic interactions (predation) on benthic infaunal composition and abundances through small-scale field experiments in 2 estuaries that differed in ambient nutrient conditions. A blocked experimental design was used that allowed an assessment of direct nutrient effects in the presence and absence of predation by epibenthic predators as well as an assessment of the independent effects of predation. Benthic microalgal, production increased with experimental nutrient additions and was greater when infaunal abundances were lower, but there were no significant interactions between these factors. Increased abundances of one infaunal taxa,Laeonereis culveri, as well as the grazer feeding guild were observed with nutrient additions and a number of taxa exhibited higher abundances with predator exclusion. In contrast to results from freshwater systems there were no significant interactive effects between nutrient additions and predator exclusion as was predicted. The infaunal responses observed here emphasize the importance of both bottom-up (nutrient addition and primary producer driven) and top-down (predation) controls in structuring benthic communities. These processes may work at different spatial and temporal scales, and affect different taxa, making observation of potential interactive effects difficult.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号