首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
大气科学   2篇
地球物理   2篇
地质学   2篇
海洋学   3篇
自然地理   4篇
  2013年   1篇
  2011年   1篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有13条查询结果,搜索用时 109 毫秒
1.
Apparent polar wander in the mean-lithosphere (= no-net-rotation = no-net-torque uniform drag) reference frame is compared with apparent polar wander in the hotspot reference frame over the past 100 Myr. Palaeo-magnetic poles and plate rotations previously used to determine an apparent polar wander path for the hotspot reference frame are here used to determine an apparent polar wander path in the mean-lithosphere reference frame. We find that the two paths are similar, especially for Late Cretaceous time, when a 10°–20° shift of the pole occurred. To first-order the hotspots and lithosphere (as a whole) moved in unison relative to the palaeomagnetic axis during Late Cretaceous time. A non-dipole field explanation for the apparent shift can probably be excluded. However, either motion of the time-averaged geomagnetic axis relative to the spin axis or polar wandering could have caused this shift, the latter being the more likely explanation.  相似文献   
2.
New swath bathymetric, multichannel seismic and magnetic data reveal the complexity of the intersection between the extinct West Scotia Ridge (WSR) and the Shackleton Fracture Zone (SFZ), a first-order NW-SE trending high-relief ridge cutting across the Drake Passage. The SFZ is composed of shallow, ridge segments and depressions, largely parallel to the fracture zone with an `en echelon' pattern in plan view. These features are bounded by tectonic lineaments, interpreted as faults. The axial valley of the spreading center intersects the fracture zone in a complex area of deformation, where N120° E lineaments and E–W faults anastomose on both sides of the intersection. The fracture zone developed within an extensional regime, which facilitated the formation of oceanic transverse ridges parallel to the fracture zone and depressions attributed to pull-apart basins, bounded by normal and strike-slip faults.On the multichannel seismic (MCS) profiles, the igneous crust is well stratified, with numerous discontinuous high-amplitude reflectors and many irregular diffractions at the top, and a thicker layer below. The latter has sparse and weak reflectors, although it locally contains strong, dipping reflections. A bright, slightly undulating reflector observed below the spreading center axial valley at about 0.75 s (twt) depth in the igneous crust is interpreted as an indication of the relict axial magma chamber. Deep, high-amplitude subhorizontal and slightly dipping reflections are observed between 1.8 and 3.2 s (twt) below sea floor, but are preferentially located at about 2.8–3.0 s (twt) depth. Where these reflections are more continuous they may represent the Mohorovicic seismic discontinuity. More locally, short (2–3 km long), very high-amplitude reflections observed at 3.6 and 4.3 s (twt) depth below sea floor are attributed to an interlayered upper mantle transition zone. The MCS profiles also show a pattern of regularly spaced, steep-inclined reflectors, which cut across layers 2 and 3 of the oceanic crust. These reflectors are attributed to deformation under a transpressional regime that developed along the SFZ, shortly after spreading ceased at the WSR. Magnetic anomalies 5 to 5 E may be confidently identified on the flanks of the WSR. Our spreading model assumes slow rates (ca. 10–20 mm/yr), with slight asymmetries favoring the southeastern flank between 5C and 5, and the northwestern flank between 5 and extinction. The spreading rate asymmetry means that accretion was slower during formation of the steeper, shallower, southeastern flank than of the northwestern flank.  相似文献   
3.
扩张作用停止和俘获俯冲小板块可能引起大的构造活动 ,如加利福尼亚Transverse海岭西部的旋转作用和来自冈瓦纳古陆的新西兰陆块上升。南美和南极之间德雷克海峡的菲尼克斯—南极扩张中心残存体———菲尼克斯海岭可能在上新世相当长的时间曾经消亡。沙克尔顿和英雄断裂带之间的前菲尼克斯板块的小部分残体与南极板块相结合。南极环流汇入德雷克海峡阻碍了沉积物堆积 ,因此 ,只有古扩张轴显示在等深图中。1997~1998年 ,西班牙“BIOHesperides”号调查船利用多波束回声测深仪获得了完整的菲尼克斯海岭海图资…  相似文献   
4.
A Customised GIS to Aid Gondwana Research   总被引:1,自引:0,他引:1  
  相似文献   
5.
Despite a spreading rate of 65–70 km Ma−1, the East Scotia Ridge has, along most of its length, a form typically associated with slower rates of sea floor spreading. This may be a consequence of cooler than normal mantle upwelling, which could be a feature of back-arc spreading. At the northern end of the ridge, recently acquired sonar data show a complex, rapidly evolving pattern of extension within 100 km of the South Sandwich Trench. New ridge segments appear to be nucleating at or near the boundary between the South American and Scotia Sea plates and propagating southwards, supplanting older segments. The most prominent of these, north of 56°30′S, has been propagating at a rate of approximately 60 km Ma−1 for at least 1 Ma, and displays a morphology unique on this plate boundary. A 40 km long axial high exists at the centre of this segment, forming one of the shallowest sections of the East Scotia Ridge. Beneath it, seismic reflection profiles reveal an axial magma chamber, or AMC, reflector, similar to those observed beneath the East Pacific Rise and Valu Fa Ridge. Simple calculations indicate the existence here of a narrow (<1 km wide) body of melt at a depth of approximately 3 km beneath the sea floor. From the topographic and seismic data, we deduce that a localised mantle melting anomaly lies beneath this segment. Rates of spreading in the east Scotia Sea show little variation along axis. Hence, the changes in melt supply are related to the unique tectonic setting, in which the South American plate is tearing to the east, perhaps allowing mantle flow around the end of the subducting slab. Volatiles released from the torn plate edge and entrained in the flow are a potential cause of the anomalous melting observed. A southward mantle flow may have existed beneath the axis of the East Scotia Ridge throughout its history.  相似文献   
6.
The Consequences of CO2 Stabilisation for the Impacts of Climate Change   总被引:1,自引:0,他引:1  
This paper reports the main results of an assessment of the global-scale implications of the stabilisation of atmospheric CO2 concentrations at 750 ppm (by 2250) and 550 ppm (by 2150), in relationto a scenario of unmitigated emissions. The climate change scenarios were derived from simulation experiments conducted with the HadCM2 global climate model and forced with the IPCC IS92a, S750 and S550 emissions scenarios. The simulated changes in climate were applied to an observed global baseline climatology, and applied with impacts models to estimate impacts on natural vegetation, water resources, coastal flood risk and wetland loss, crop yield and food security, and malaria. The studies used a single set of population and socio-economic scenarios about the future that are similar to those adopted in the IS92a emissions scenario.An emissions pathway which stabilises CO2 concentrations at 750 ppmby the 2230s delays the 2050 temperature increase under unmitigated emissions by around 50 years. The loss of tropical forest and grassland which occurs by the 2050s under unmitigated emissions is delayed to the 22nd century, and the switch from carbon sink to carbon source is delayed from the 2050s to the 2170s. Coastal wetland loss is slowed. Stabilisation at 750 ppm generally has relatively little effect on the impacts of climate change on water resource stress, and populations at risk of hunger or falciparum malaria until the 2080s.A pathway which stabilises CO2 concentrations at 550 ppm by the 2170s delays the 2050 temperature increase under unmitigated emissions by around 100 years. There is no substantial loss of tropical forest or grassland, even by the 2230s, although the terrestrial carbon store ceases to act as a net carbon sink by around 2170 (this time because the vegetation has reached a new equilibrium with the atmosphere). Coastal wetland loss is slowed considerably, and the increase in coastal flood risk is considerably lower than under unmitigated emissions. CO2 stabilisation at 550 ppm reduces substantially water resource stress, relative to unmitigated emissions, but has relatively little impact on populations at risk of falciparum malaria, and may even cause more people to be at risk of hunger. While this study shows that mitigation avoids many impacts, particularly in the longer-term (beyond the 2080s), stabilisation at 550 ppm appears to be necessary to avoid or significantly reduce most of the projected impacts in the unmitigated case.  相似文献   
7.
8.
9.
This paper provides an overview of the aims, objectives, research activities undertaken, and a selection of results generated in the European Commission-funded project entitled “Modelling the Impact of Climate Extremes” (MICE) – a pan-European end-to-end assessment, from climate model to impact model, of the potential impacts of climate change on a range of economic sectors important to the region. MICE focussed on changes in temperature, precipitation and wind extremes. The research programme had three main themes – the evaluation of climate model performance, an assessment of the potential future changes in the occurrence of extremes, and an examination of the impacts of changes in extremes on six activity sectors using a blend of quantitative modelling and expert judgement techniques. MICE culminated in a large stakeholder-orientated workshop, the aim of which was not only to disseminate project results but also to develop new stakeholder networks, whose expertise can be drawn on in future projects such as ENSEMBLES. MICE is part of a cluster of three projects, all related to European climate change and its impacts. The other projects in the cluster are PRUDENCE (Prediction of Regional Scenarios and Uncertainties for Defining European Climate Change Risks and Effects) and STARDEX (Statistical and Regional Dynamical Downscaling of Extremes for European Regions).  相似文献   
10.
Magnetic profiles obtained during the Hesant 92/93 cruise with the R/V Hesperides show large amplitude anomalies (up to 1000 nT) along a 100 km wide band in the northern margin of the Powell Basin. The anomalies, which are also locally identified in the eastern and western margins, are attributed to the continuation of the two branches of the Antarctic Peninsula Pacific Margin Anomaly (PMA). Interactive modelling of two-dimensional bodies in four profiles oriented NNW-SSE allows us to determine the main features of the magnetic source bodies within the continental crust. These are elongated in a N60/degE trend, and their base is located at a depth exceeding 15 km. Equivalent magnetic susceptibilities mostly between 0.07 and 0.1 (SI) are obtained. These values are consistent with the hypothesis that remanent magnetisation of the magnetic source bodies is sub-parallel to the present geomagnetic field (norÍmally magnetised). The general trends of the bathymetry a nd the geometry of the acoustic basement on multichannel seismic profiles are consistent with the upper surface of magnetic bodies. In order to match the observed anomalies it is also necessary to consider a second tabular shaped body with induced magnetisation in almost all the profiles, which could represent layers 2 and 3 of the oceanic crust of the Powell Basin. Three different geometries of connection between the anomalies in the Powell Basin margins and the PMA branches are discussed. The most plausible one is the occurrence of two branches, although they are closer together than in the Bransfield Strait. The northern branch would continue along the fragments of continental crust of the South Scotia Ridge located at the northern boundary of the Powell Basin, whereas the southern branch would be located only in the eastern and western passive margins of the Powell Basin. The apparent splitting of the southern branch of the anomalous body indicates that it was emplaced before Oligo cene times, when the opening of this basin occurred, and that it was subsequently fragmented during the Cenozoic. A possible time of formation of the PMA body would be during the long Cretaceous normal polarity interval, which also coincides with a peak in magmatic activity along the Antarctic Peninsula.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号