首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
地质学   2篇
海洋学   7篇
自然地理   3篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  1997年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The southwestern part of the Scotia Sea, at the corner of the Shackleton Fracture Zone with the South Scotia Ridge has been investigated, combining marine magnetic profiles, multichannel seismic reflection data, and satellite-derived gravity anomaly data. From the integrated analysis of data, we identified the presence of the oldest part of the crust in this sector, which tentative age is older than anomaly C10 (28.7 Ma). The area is surrounded by structural features clearly imaged by seismic data, which correspond to gravity lows in the satellite-derived map, and presents a rhomboid-shaped geometry. Along its southern boundary, structural features related to convergence and possible incipient subduction beneath the continental South Scotia Ridge have been evidenced from the seismic profile. We interpret this area, now located at the edge of the south-western Scotia Sea, as a relict of ocean-like crust formed during an earlier, possibly diffuse and disorganized episode of spreading at the first onset of the Drake Passage opening. The successive episode of organized seafloor spreading responsible for the opening of the Drake Passage that definitively separated southern South America from the Antarctic Peninsula, instigated ridge-push forces that can account for the subduction-related structures found along the western part of the South Scotia Ridge. This seafloor accretion phase occurred from 27 to about 10 Ma, when spreading stopped in the western Scotia Sea Ridge, as resulted from the identification of the marine magnetic anomalies.  相似文献   
2.
Lago Roca/Acigami is a “fjord-type” lake located in the southernmost part of South America, in the proximity of the Beagle Channel. A high-resolution seismic survey was carried out to analyse the seismic stratigraphy of the lake and to shed some light on the post-Last Glacial Maximum history of the area. Six seismic units were recognised, and their nature and depositional context were interpreted using seismic stratigraphy and acoustic facies analysis. A buried large ridge was identified within the glacial unit (SU1), interpreted as a frontal moraine that indicates a stabilisation phase. After retreat of the glacier from the basin, the trough was flooded by meltwater and a lake developed (SU2). The seismic facies, from bottom to top, depict a transition from ice-contact (SU2; SU3) to ice-distal proglacial conditions (SU4). A thick draping unit (SU5) marks a marine transgressive event and the instauration of a fjord environment in the basin. The marine transgression was a rapid event preceded by a fall in the lake level that caused an erosional unconformity. During the fjord phase the sedimentation remained controlled by meltwater discharge. Sea level fall, and subsequent disconnection from the Beagle Channel was accompanied by a progradation of the glaciofluvial deltaic sediments and the occurrence of several mass-wasting deposits (SU6). © 2019 John Wiley & Sons, Ltd.  相似文献   
3.
Areas of transtension are discovered in the western part of the Romanche transform fault. Geodynamical parameters of the transtension are calculated on the basis of three-dimensional modeling of the inversive magnetic layer using survey data. The interval spreading rates calculated on this basis appeared to be smaller (1.65 cm/y for paleoanomalies C1-C5E on the northern side of the fault and 1.56 cm/y for paleoanomalies C6–C24 on the southern side) than those derived from the theoretical concepts based on the NUVEL-1 and NUVEL-1A models.  相似文献   
4.
5.
Within the central Mediterranean, the northwestern sector of the Sicily Channel is the unique area where two independent tectonic processes can be analyzed: the building of the Sicilian–Maghrebian Chain occurred in Late Miocene and the continental lithospheric rifting of the northern African margin occurred since Early Pliocene. These two geodynamic processes generated a peculiar structural style that is largely recognizable in the Adventure Plateau. This plateau is the shallowest part of the Sicily Channel, where water depths do not generally exceed 150 m. It hosts several areas of geomorphic relief, which in some cases rise up to less than 20 m beneath sea-level. A series of submarine magmatic manifestations occur in this area, mainly associated with the extensional phase which produced the rift-related depressions of Pantelleria, Malta and Linosa. Seismic-stratigraphic and structural analyses, based on a large set of multichannel seismic reflection profiles and well information acquired mostly for commercial purposes in the 1970s and 1980s, have allowed us to reconstruct the Triassic-Quaternary sedimentary succession of the Adventure Plateau and define its structural setting. A broad lithological distinction can be made between the successions ranging from Triassic to Paleogene, predominantly carbonate, and the successions ranging from Miocene to Quaternary, predominantly siliciclastic. Three main structural belts have been identified within the Adventure Plateau: (1) the northern belt, affected during Late Miocene time by ESE-verging thrusts belonging to the External Thrust System orogenic domain, which represents the lowermost structural level of the Sicilian–Maghrebian Orogen; (2) the Apenninic–Maghrebian domain of the Sicilian–Maghrebian Orogen, which occupies the northwestern sector of the Adventure Plateau, and that is overthrusted on the External Thrust System orogenic domain during the Late Miocene; (3) the extensional belt of the southwestern sector of the Adventure Plateau, affected by broad NW-trending, high-angle normal faults associated with the Early Pliocene continental rifting phase. The eastern boundary of the Adventure Plateau corresponds to a broadly N–S trending lithospheric transfer zone separating two sectors of the Sicily Channel characterized by a different tectonic evolution.  相似文献   
6.
The Lake Izabal Basin in Guatemala is a major pull-apart basin along the sinistral Polochic Fault, which is part of the North American and Caribbean plate boundary. The basin infill contains information about the tectonic and sedimentological processes that have imparted a significant control on its sedimentary section. The inception of the basin has been linked to the relative importance of the Polochic Fault in the tectonic history of the plate boundary; yet, its sedimentological record and its inception age have been poorly documented. This study integrates diverse datasets, including industry reports, well logs and reports, well cuttings, vintage seismic data, outcrop observations and geochronological data to constrain the initial infill and age of inception of the basin. The integrated data show that during the Oligocene–Miocene, a marine carbonate platform was established in the region which was later uplifted and eroded in the early Miocene. The fluvial–lacustrine deposits above this carbonate platform are part of the initial infill of the basin and are constrained with zircon weighted-mean 206Pb/238U ages of 12.060 ± 0.008 from a volcanic tuff ~30 m above the unconformity. Sandstone, mudstone and coal dominate the interval from 12 to 4 Ma, with an increase in conglomerate correlating to the uplift of the Mico Mountains and San Gil Hill at 4 Ma. Fault switch activity between the Polochic and Motagua faults has been hypothesized to explain total offset along the Polochic Fault and the geologic and geodetic slip rates along the two faults. The 12 Ma age determined for the initial infill of the basin confirms this hypothesis. Consequently, our study confirms that at ~12 Ma the Polochic Fault served as the main fault of the plate boundary with inferred slip rates ranging from 13 to 21 mm/yr with a strong possibility that the Polochic Fault was, at some point between 15 Ma and 7 Ma, the only active fault of the plate boundary. The results of this study show that tectonic records preserved in sediments of strike-slip basins improve the understanding of the relative significance of individual faults and the implications with respect to strain partitioning throughout its tectonic history.  相似文献   
7.
8.
At ~20 ka bp , lakes Yehuin, Chepelmut and Fagnano constituted a single, large water body in the central part of Isla Grande de Tierra del Fuego (southernmost Patagonia). The evolutionary history of this lake, known as ‘Palaeolago Fueguino’, was probably controlled by the advances, stillstands and retreats of the ‘Fagnano Palaeoglacier’, an outlet glacier that flowed eastward from the Darwin Cordillera ice sheet. A detailed analysis of high-resolution seismic reflection profiles acquired within the three lakes has allowed the identification and correlation of seven unconformities within the lacustrine sedimentary infill, three seismostratigraphic sequences in Lago Fagnano and four in Lago Yehuin. A seismic stratigraphic correlation between these sequences suggests that these basins formerly constituted a single, large lacustrine body. A lake-level curve of the evolutionary stages of each lake, derived from the seismostratigraphic analysis of the sedimentary infill is proposed here, representing a 17.5 ka-long record. It was further integrated with the glacial record of the advances and retreats of the Fagnano Palaeoglacier. This study has implications for interpreting the sedimentary history of lake basins in glaciated mountain ranges.  相似文献   
9.
Magnetic signature of the Sicily Channel volcanism   总被引:1,自引:0,他引:1  
Widespread Late Miocene to Quaternary volcanic activity is know to have occurred in the Sicily Channel continuing up to historical time. New magnetic anomaly data acquired in the Pantelleria Graben, one of the three main tectonic depressions forming the WNW-trending Sicily Channel rift system, integrated with available profiles, are used to identify and map volcanic bodies in this sector of the northern African margin. Some of these manifestations, both outcropping at the sea-floor or buried beneath a variable thickness of Plio-Quaternary sedimentary cover, have been imaged by seismic reflection profiles. Three main positive magnetic anomalies have been found: to the S–E of the Pantelleria Island, the largest emerged caldera of the Sicily Channel, along the eastern margin of the Nameless Bank, and at the north–western termination of the Linosa Graben. Only the anomaly located off the south–eastern coast of the Pantelleria Island, associated with a large outcropping body gradually buried beneath a substantially undisturbed Upper Pliocene-Quaternary sediments, aligns with the trend of the tectonic depression. 2-D geophysical models produced along seismic transects perpendicularly crossing the Pantelleria Graben have allowed to derive its deep crustal structure, and detect the presence of buried magmatic bodies which generate the anomalies. Marginal faults seem to have played a major role in focussing magma emplacement in this sector of the Sicily Channel. The other anomalies represent off-axis volcanic episodes and generally do not show evident magmatic manifestations at the sea-floor. These magnetic maxima seem to follow a NNE-SSW-trending belt extending from Linosa Island to the Nameless Bank, where pre-existing crustal anisotropies may have conditioned magma emplacement both at deep and shallow crustal levels. In general, data analysis has shown that there is a structural control on magma emplacement, with the major magmatic features located in specific locations like boundary faults and transfer zones, in a manner similar to that found along several segments of the East African Rift system.  相似文献   
10.
Dove Basin, a small oceanic domain located within the southern Scotia Sea, evidences a complex tectonic evolution linked to the development of the Scotia Arc. The basin also straddles the junction between the main Southern Ocean water masses: the Antarctic Circumpolar Current (ACC), the Southeast Pacific Deep Water (SPDW) and the Weddell Sea Deep Water (WSDW). Analysis of multichannel seismic reflection profiles, together with swath bathymetry data, reveals the main structure and sediment distribution of the basin, allowing a reconstruction of the tectonostratigraphic evolution of the basin and assessment of the main bottom water flows that influenced its depositional development. Sediment dispersed in the basin was largely influenced by gravity‐driven transport from adjacent continental margins, later modified by deep bottom currents. Sediments derived from melting icebergs and extensive ice sheets also contributed to a fraction of the basin deposits. We identify four stages in the basin evolution which – based on regional age assumptions – took place during the early Miocene, middle Miocene, late Miocene–early Pliocene and late Pliocene–Quaternary. The onsets of the ACC flow in Dove Basin during the early Miocene, the WSDW flow during the middle Miocene, and the SPDW during the late Miocene were influenced by tectonic events that facilitated the opening of new oceanic gateways in the region. The analysis of Dove Basin reveals that tectonics is a primary factor influencing its sedimentary stacking patterns, the structural development of new oceanic gateways permitting the inception of deep‐water flows that have since controlled the sedimentary processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号