首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   1篇
地球物理   6篇
地质学   8篇
海洋学   10篇
自然地理   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1998年   2篇
  1994年   2篇
  1984年   2篇
  1983年   2篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
The Apennine Chain provides the first example of stratigraphic (time) and synsedimentary tectonic (space) distribution of the calcari aLucina Miocene equivalents of modern cold-vent carbonates. Chemosynthetic faunal assemblages and related carbonate deposits are found at different stratigraphic levels, with peaks during Langhian-Serravallian and late Tortonian-early Messinian times. A general increase in frequency and volume occurs with time. A genetic link between venting and the Messinian Evaporite event is difficult to demonstrate. However,Lucina limestones are limited to preevaporitic times, and their maximum abundance is reached just before the onset of the Messinian Evaporite accumulation.Lucina limestones occur in almost all tectofacies of the orogen, from backland to foreland.  相似文献   
2.
3.
Submarine fans of different sizes, geometry, and petrology were built in the Marnoso-arenacea Basin, a migrating foredeep within an active continental margin. In an initial depositional stage, a well-developed basin plain received sediment from flows that by-passed restricted fan systems, now buried, located near the north end of an elongated basin. Minor fans grew near the steeper, tectonically deformed side of the basin. In the later stage, turbidite deposition was stopped in the former basin plain. Sediment sources and feeder channels shifted and fed fan lobes that prograded in a narrower trough and were distored (choked). The tectonic control on development of megasequence and sand bodies is stressed here in contrast with previous emphasis on “inner” or “autocyclic” mechanisms.  相似文献   
4.
Using a combination of geophysical and geotechnical data from Storfjorden Trough Mouth Fan off southern Svalbard, we investigate the hydrogeology of the continental margin and how this is affected by Quaternary glacial advances and retreats over the continental shelf. The geotechnical results show that plumites, deposited during the deglaciation, have high porosities, permeabilities and compressibilities with respect to glacigenic debris flows and tills. These results together with margin stratigraphic models obtained from seismic reflection data were used as input for numerical finite element models to understand focusing of interstitial fluids on glaciated continental margins. The modelled evolution of the Storfjorden TMF shows that tills formed on the shelf following the onset of glacial sedimentation (ca. 1.5 Ma) acted as aquitards and therefore played a significant role in decreasing the vertical fluid flow towards the sea floor and diverting it towards the slope. The model shows that high overpressure ratios (up to λ ca. 0.6) developed below the shelf edge and on the middle slope. A more detailed model for the last 220 kyrs accounting for ice loading during glacial maxima shows that the formation of these aquitards on the shelf focused fluid flow towards the most permeable plumite sediments on the slope. The less permeable glacigenic debris flows that were deposited during glacial maxima on the slope hinder fluid evacuation from plumites allowing high overpressure ratios (up to λ ca. 0.7) to develop in the shallowest plumite layers. These high overpressures likely persist to the Present and are a critical precondition for submarine slope failure.  相似文献   
5.
Submarine fans of different sizes, geometry, and petrology were built in the Marnoso-arenacea Basin, a migrating foredeep within an active continental margin. In an initial depositional stage, a well-developed basin plain received sediment from flows that by-passed restricted fan systems, now buried, located near the north end of an elongated basin. Minor fans grew near the steeper, tectonically deformed side of the basin. In the later stage, turbidite deposition was stopped in the former basin plain. Sediment sources and feeder channels shifted and fed fan lobes that prograded in a narrower trough and were distored (choked). The tectonic control on development of megasequence and sand bodies is stressed here in contrast with previous emphasis on “inner” or “autocyclic” mechanisms. Margin setting represents fan and/or source area  相似文献   
6.
Raised marine terraces and submerged insular shelves are used through an integrated approach as markers of relative sea level changes along the flanks of the Salina volcanic island (Aeolian Arc, southern Italy) for the purpose of evaluating its crustal vertical deformation pattern through time. Paleo sea level positions are estimated for the terrace inner margins exposed subaerially at different elevations and the erosive shelf edges recognized offshore at different depths. Compared with the eustatic sea levels at the main highstands (for the terraces) and lowstands (for the shelf edges) derived from the literature, these paleo sea level markers allowed us to reconstruct the interplay among different processes shaping the flanks of the island and, in particular, to quantify the pattern, magnitudes and rates of vertical movements affecting the different sectors of Salina since the time of their formation. A uniform uplift process at rates of 0.35 m ka−1 during the Last Interglacial is estimated for Salina (extended to most of the Aeolian Arc) as evidence of a regional (tectonic) vertical deformation affecting the sub-volcanic basement in a subduction-related geodynamic context. Before that, a dominant subsidence at rates of 0.39–0.56 m ka−1 is instead suggested for the time interval between 465 ka (MIS 12) and the onset of the Last Interglacial (MIS 5.5, 124 ka). By matching the insular shelf edges with the main lowstands of the sea level curve, a relative age attribution is provided for the (mostly) submerged volcanic centres on which the deepest (and oldest) insular shelves were carved, with insights on the chronological development of the older stages of Salina and the early emergence of the island. The shift from subsidence to uplift at the Last Interglacial suggests a major geodynamic change and variation of the stress regime acting on the Aeolian sub-volcanic basement. © 2019 John Wiley & Sons, Ltd.  相似文献   
7.
The Crati Fan is located in the tectonically active submerged extension of the Apennines chain and foretrough. The small fan system is growing in a relatively shallow (200 to 450 m), elongate nearshore basin receiving abundant input from the Crati River. The fan is characterized by a short, steep, channelized section (inner or upper fan) and a smooth, slightly bulging distal section (outer or lower fan). The numerous subparallel channels head in the shelf or littoral zone and do not form branching distributary patterns. Sand and mud depositional lobes of the outer fan stretch over more than 60% of fan length. Margin setting represents fan and/or source area  相似文献   
8.
Over the last ~267 ky, the island of Lipari has erupted magmas ranging in compositions from basaltic andesites to rhyolites, with a notable compositional gap in the dacite field. Bulk geochemical and isotopic compositions of the volcanic succession, in conjunction with major and trace elemental compositions of minerals, indicate that the rhyolites were dominantly generated via crystal fractionation processes, with subordinate assimilation. Radiogenic (Sr, Nd, and Pb) and stable (O) isotopes independently suggest ≤30 % of crustal contamination with the majority of it occurring in mafic compositions, likely relatively deep in the system. Within the rhyolites, crystal-rich, K2O-rich enclaves are common. In contrast to previous interpretations, we suggest that these enclaves represent partial melting, remobilization and eruption of cumulate fragments left-over from rhyolite melt extraction. Cumulate melting and remobilization is supported by the presence of (1) resorbed, low-temperature minerals (biotite and sanidine), providing the potassic signature to these clasts, (2) reacted Fo-rich olivine, marking the presence of mafic recharge, (3) An38–21 plagioclase, filling the gap in feldspar composition between the andesites and the rhyolites and (4) strong enrichment in Sr and Ba in plagioclase and sanidine, suggesting crystallization from a locally enriched melt. Based on Sr-melt partitioning, the high-Sr plagioclase would require ~2300 ppm Sr in the melt, a value far in excess of Sr contents in Lipari and Vulcano magmas (50–1532 ppm) but consistent with melting of a feldspar-rich cumulate. Due to the presence of similar crystal-rich enclaves within the rhyolites from Vulcano, we propose that the eruption of remobilized cumulates associated with high-SiO2 rhyolites may be a common process at the Aeolian volcanoes, as already attested for a variety of volcanic systems around the world.  相似文献   
9.
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice‐rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner‐fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.  相似文献   
10.
 Sedimentary processes in the Stromboli Canyon and in the Marsili Basin are studied on the basis of side-scan sonographs. The basin margins are characterized by slump scars, gullies, channels, and large debrites on the Calabrian slope and by straight chutes of fast downslope sediment transport and blocky–hummocky avalanche deposits on the flanks of the Stromboli volcano. In the Stromboli Canyon and in minor deep-sea channels, sediment transport by turbidity currents generates sediment waves. Between the basin margins and the abyssal plain, the outcropping volcanic basement traps part of the sediment coming from the marginal areas. The abyssal plain is characterized by low relief lobes and ponded sediments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号