首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   2篇
地球物理   3篇
地质学   8篇
海洋学   2篇
  2020年   1篇
  2015年   1篇
  2013年   3篇
  2010年   1篇
  2001年   1篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
  1978年   1篇
  1970年   1篇
排序方式: 共有13条查询结果,搜索用时 109 毫秒
1.
2.
The Passaic Formation of the late Triassic Newark Supergroup is 2700 m thick and was deposited in series of wide, deep to shallow lacustrine environments in the Newark rift basin (eastern North America). The Passaic Formation can be divided into lower, middle, and upper sections based on depositional structures, composition and the distribution and morphology of its evaporites. Evaporites formed as a result of syndiagenetic cementation and/or displacive processes. Evaporitive minerals now include gypsum and anhydrite, although other mineral species, such as glauberite, may have originally existed. Most of the evaporites of the Passaic Formation occur within massive red mudstone and siltstone lithologies in the form of diffuse cements, void-fillings, euhedral crystals, crystal clusters and nodules. These evaporites grew displacively within the fine siliciclastic matrix as a result of changes in the hydrochemical regimes of the rift basin. A well-developed upward increase in the amount of evaporite material is present in the Passaic Formation. This resulted from: (1) long-term, progressive increase in aridity, and (2) significant increase in evaporation surface area of the basin during its tectonic evolution. A nonmarine source for the evaporites is evident from the isotopic data. Sulphate δ34S ranges from 11%. to 3.3%. CDT, while δ18O ranges from + 15.1%. to + 20.9%. SMOW, indicating derivation from early diagenetic oxidation of organic sulphur and pyrite within the organic-rich, lacustrine deposits. The 87Sr/86Sr ratios in sulphate are radiogenic (average 0.71211), showing the interaction of basin waters with detrital components and that the Newark Basin was isolated from the world ocean. Most of the original evaporites show evidence of diagenetic change to polycrystalline and polymineralic pseudomorphs now filled with recrystallized coarse-grained anhydrite (1–3 mm size) and low-temperature albite. Homogenization temperatures of fluid inclusions within the coarse-grained anhydrite indicate crystallization temperatures for anhydrite in the range of 150° to 280°C. Such elevated temperatures resulted from circulation of hot water in the basin. Later exhumation of these rocks caused partial to total replacement of anhydrite by gypsum in the upper part of the section. The resulting increase in volume due to hydration of anhydrite at shallow depths also emplaced non-evaporative satin-spar veins (fibrous gypsum) along bedding planes and in fractures. While the local geology of the Newark rift basin controlled the distribution of facies, the sedimentological development of the Passaic Formation evaporites resulted from the world-wide climatic aridity that prevailed during the late Triassic. because the Newark Basin sequence was only covered with about 3 km of sedimentary overburden that correspond to about 100°C and hence suggests that evaporites have experienced alteration by hot fluids. 5 As the Triassic marks the greatest evaporite formation world-wide and profound sense of parched continentality throughout the world existed before the final break-up of the Pangea, the Passaic Formation evaporites are an example of the influence of these palaeoclimatic conditions at the eastern margin of North America.  相似文献   
3.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   
4.
5.
During the last decade many hypotheses were suggested to explain the phenomenon of induced electrical polarization in ionic conductive media. The most reliable of these is Fredricksberg's. Fredricksberg (1962) supposed that the pore spaces of a rock is composed of successively narrow (active zones) and wide (inactive zones). He simulated these pore spaces by a synthetic material that has an extremely high resistance. The pore spaces were generally in tube forms which exhibited some constrictions. He saturated these tubes with an electrolyte of a given concentration. An electric current was passed through this model. He observed an induced polarization voltage after current interruption. He attributed the formation of this voltage to a concentration gradient which took place due to the presence of excess charges in the active zones. Fredricksberg introduced a parameter (9) which described the relation among the lengths and cross sectional areas of the wide zones, the number of ions within each zone after current interruption with the recorded polarizability. The aim of this work is to correlate Fredricksberg's parameter with a parameter determined for natural rocks and to show experimentally the validity of this hypothesis when applying for some varieties of sandstones and volcanic rocks. The new parameter will help to evaluate a relationship between the polarizability and the water-collecting properties of rocks. Herein, we used the tortuosity T of sandstone samples instead of the parameter φ which was used by Fredricksberg to represent the pore geometry within his model (tortuosity of the passes within the model). It was shown that both φ and T have the same relationship with the polarizability ν of the rock samples and if φ or T have very low or very high values the polarizability ν tends to its minimum value, i.e. the curve representing the relation between ν and T has a maximum point corresponding to an intermediate value of T. This result supports Fredricksberg's hypothesis and confirm his results on synthetic models. For volcanic rocks the formation factor F was used since it was difficult to determine the porosity of the samples and consequently to calculate the tortuosity T as for sandstone samples. Experimental results confirm those obtained from sandstone. The grain constituents of sandstone samples were represented on equilateral triangle and the magnitude of induced polarization ν of each sample was deduced and represented on this triangle. Equipolarizability values ν drawn on this triangle showed that TJ will increase as the silty fractions of the rock increase, where the center of this triangle (represents minimum porosity) has polarizability less than 0.25%. An attempt was made to determine the coefficient of anisotropy of volcanic rock samples using the induced polarization method. For this reason the polarizability was deduced by measuring the induced polarization voltage for two perpendicular directions in a fractured cubes of andesitic basalt samples the coefficient of anisotropy was found to be equal 1.18.  相似文献   
6.
Résumé

En zones semi-arides, l'irrégularité temporelle des écoulements pose de sérieux problèmes aux ingénieurs chargés d'évaluer le transport solide dans les bassins versants. Ainsi, pour décider d'une méthodologie d'estimation de l'érosion spécifique, les écoulements au droit de deux stations hydrométriques contrôlant des sous-bassins adjacents sont examinés, dont les apports se rejoignent à quelques kilomètres à l'aval, dans un barrage en exploitation. Vingt deux années de mesures de concentrations en éléments fins en suspension (1973/74-1994/95) sont étudiées; l'approche statistique consiste à les homogénéiser par la recherche d'un modèle régressif significatif reliant le débit solide au débit liquide, à différentes échelles temporelles, permettant ainsi de quantifier d'une part l'érosion et de dégager d'autre part la saison productive en sédiments. L'approche mensuelle avec un modèle en loi de puissance reste la plus significative, expliquant en moyenne 80% de la variation totale. L'automne constitue une saison particulièrement productive en sédiments, véhiculant en moyenne plus de 50% de l'apport solide moyen interannuel.  相似文献   
7.
Abstract: El Mueilha area consists of post-collision granitic rocks intruding Pan-African metasediments, metavolcanics and granodiorites. Tin mineralization in Gabal El Mueilha is either of vein type or disseminated in the greisenized and albitized parts of the granitic rocks. Cassiterite and wolframite-bearing quartz veins also characterize a small intrusion of muscovite granite at El Mueilha tin mine area. Detailed geochemical prospecting for the rare metals Sn, Nb, Be, Li, U, Th and some other trace elements was carried out at Gabal El Mueilha area using stream sediments survey. Sixty-seven stream sediment samples were collected from the main drainage patterns of the study area. Statistical parameters were calculated for the analyzed elements. The sought elements Sn, Nb, Be and Li have relatively high background values in the studied sediments. This may reflect the role of the pathfinder elements (Nb, Be and Li) during secondary dispersion survey for Sn mineralization.
Geochemical maps were constructed to delineate anomalous areas with abnormally high rare metal contents. The anomalous Sn, Nb and Be areas are mainly encountered in the main stream draining the mineralized zones of El Mueilha tin mine and near the SW albitized parts of the post-collision granite. Correlation coefficient matrices show significant positive relation between Sn and the rare metals group (Nb, Rb and Li) at 99 % significant level. R-mode factor analysis for the concerned elements yields five factor–model.  相似文献   
8.
The Middle to Upper Triassic redbeds at the base of the Ghomaride and Internal ‘Dorsale Calcaire’ Nappes in the Rifian sector of the Maghrebian Chain have been studied for their sedimentological, petrographic, mineralogical and chemical features. Redbeds lie unconformably on a Variscan low‐grade metamorphic basement in a 300 m thick, upward fining and thinning megasequence. Successions are composed of predominantly fluvial red sandstones, with many intercalations of quartzose conglomerates in the lower part that pass upwards into fine‐grained micaceous siltstones and massive mudstones, with some carbonate and evaporite beds. This suite of sediments suggests that palaeoenvironments evolved from mostly arenaceous alluvial systems (Middle Triassic) to muddy flood and coastal plain deposits. The successions are characterized by local carbonate and evaporite episodes in the Late Triassic. The growth of carbonate platforms is related to the increasing subsidence (Norian‐Rhaetian) during the break‐up of Pangea and the earliest stages of the Western Tethys opening. Carbonate platforms became widespread in the Sinemurian. Sandstones are quartzose to quartzolithic in composition, testifying a recycled orogenic provenance from low‐grade Palaeozoic metasedimentary rocks. Palaeoweathering indices (Chemical Index of Alteration, Chemical Index of Weathering and Plagioclase Index of Alteration) suggest both a K‐enrichment during the burial history and a source area that experienced intense weathering and recycling processes. These processes were favoured by seasonal climatic alternations, characterized by hot, episodically humid conditions with a prolonged dry season. These climatic alternations produced illitization of silicate minerals, iron oxidation and quartz‐rich red sediments in alluvial systems. The estimated burial temperature for the continental redbeds is in the range of 100 to 160 °C with lithostatic/tectonic loading of ca 4 to 6 km. These redbeds can be considered as regional petrofacies that mark the onset of the continental rift valley stage in the Western Pangea (Middle Triassic) before the opening of the western part of Tethys in the Middle Jurassic. The studied redbeds and the coeval redbeds of many Alpine successions (Betic, Tellian and Apenninic orogens) show a quite similar history; they identify a Mesomediterranean continental block originating from the break‐up of Pangea, which then played an important role in the post‐Triassic evolution of the Western Mediterranean region.  相似文献   
9.
<正>Precambrian ophiolites are abundant in the ArabianNubian Shield of NE Africa and Arabia and range in age from 690 to 890 Ma.In Egypt,they are widely distributed in the central and southern Eastern Desert and occur as nape complexes along sature zone or dismembered masses in metavolcano-sedimenatry assemblages.The ophiolite  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号