首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
大气科学   7篇
地质学   1篇
海洋学   2篇
自然地理   2篇
  2015年   1篇
  2013年   2篇
  2010年   1篇
  2006年   1篇
  2002年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1989年   1篇
  1986年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
High volume bulk aerosol samples were collected continuously at three Antarctic sites: Mawson (67.60° S, 62.50° E) from 20 February 1987 to 6 January 1992; Palmer Station (64.77° S, 64.06° W) from 3 April 1990 to 15 June 1991; and Marsh (62.18° S, 58.30° W) from 28 March 1990, to 1 May 1991. All samples were analyzed for Na+, SO 4 2– , NO 3 , methanesulfonate (MSA), NH 4 + ,210Pb, and7Be. At Mawson for which we have a multiple year data set, the annual mean concentration of each species sometimes vary significantly from one year to the next: Na+, 68–151 ng m–3; NO 3 , 25–30 ng m–3; nss SO 4 2– , 81–97 ng m–3; MSA, 19–28 ng m–3; NH 4 + , 16–21 ng m–3;210Pb, 0.75–0.86 fCi m–3. Results from multiple variable regression of non-sea-salt (nss) SO 4 2– with MSA and NO 3 as the independent variables indicates that, at Mawson, the nss SO 4 2– /MSA ratio resulting from the oxidation of dimethylsulfide (DMS) is 2.80±0.13, about 13% lower than our earlier estimate (3.22) that was based on 2.5 years of data. A similar analysis indicates that the ratio at Palmer is about 40% lower, 1.71±0.10, and more comparable to previous results over the southern oceans. These results when combined with previously published data suggest that the differences in the ratio may reflect a more rapid loss of MSA relative to nss SO 4 2– during transport over Antarctica from the oceanic source region. The mean210Pb concentrations at Palmer and Marsh and the mean NO 3 concentration at Palmer are about a factor of two lower than those at Mawson. The210Pb distributions are consistent with a210Pb minimum in the marine boundary layer in the region of 40°–60° S. These features and the similar seasonalities of NO 3 and210Pb at Mawson support the conclusion that the primary source regions for NO 3 are continental. In contrast, the mean concentrations of MSA, nss SO 4 2– , and NH 4 + at Palmer are all higher than those at Mawson: MSA by a factor of 2; nss SO 4 2– by 10%; and NH 4 + by more than 50%. However, the factor differences exhibit substantial seasonal variability; the largest differences generally occur during the austral summer when the concentrations of most of the species are highest. NH 4 + /(nss SO 4 2– +MSA) equivalent ratios indicate that NH3 neutralizes about 60% of the sulfur acids during December at both Mawson and Palmer, but only about 30% at Mawson during February and March.  相似文献   
2.
A multi-proxy paleoenvironmental study from Lake WB02 (72.29°N, 109.87°W) on Northern Victoria Island, Nunavut, Canada provides an 8.4-ka record of chironomid and ecosystem production. Mean July air temperatures for this region during the Holocene were inferred from the fossil record. The chironomid assemblages contained 33 taxa and were dominated by Paracladius and Heterotrissocladius maeaeri-type. Primary production and chironomid food availability inferred from sediment biogenic silica and loss on ignition at 550°C, and chironomid concentrations, all exhibited synchronous patterns of change through time. Similar to other climate records from across the Arctic, the sediment and fossil data from Lake WB02 support the hypothesis of a warm and productive early to middle Holocene, a cool and generally unproductive middle to late Holocene and a return to a warmer, more productive environment in the past 100 years. Mean July air temperature reconstructions based on both the modern analogue technique (MAT) and weighted averaging partial least squares regression (WAPLS), however, failed to reflect these same changes. The difference between the qualitative and quantitative environmental reconstructions may be due to the restrictions associated with the use of these inference tools, the effects of which are more significant in unproductive ecosystems such as Arctic lakes.  相似文献   
3.
Weekly bulk aerosol samples collected at Funafuti, Tuvalu (8°30S, 179°12E), American Samoa (14°15S, 170°35W), and Rarotonga (21°15S, 159°45W), from 1983 through most of 1987 have been analyzed for nitrate and other constituents. The mean nitrate concentration is about 0.11 g m–3 at each of these stations: 0.107±0.011 g m–3 at Funafuti; 0.116±0.008 at American Samoa; and 0.117±0.010 at Rarotonga. Previous measurements of mineral aerosol and trace metal concentrations at American Samoa are among the lowest ever recorded for the near-surface troposphere and indicate that this region is minimally affected by transport of soil material and pollutants from the continents. Consequently, the nitrate concentration of 0.11 g m–3 can be regarded as the natural level for the remote marine boundary layer of the tropical South Pacific Ocean. In contrast, over the tropical North Pacific which is significantly impacted by the transport of material from Asia and North America, the mean nitrate concentrations are about three times higher, 0.29 and 0.36 g m–3 at Midway and Oahu, respectively. The major sources of the nitrate over the tropical South Pacific are still very uncertain. A very significant correlation between the nitrate concentrations at American Samoa and the concentrations of 210Pb suggests that transport from continental sources might be important. This continental source could be lightning, which occurs most frequently over the tropical continents. A near-zero correlation with 7Be indicates that the stratosphere and upper troposphere are probably not the major sources. A significant biogenic source would be consistent with the higher mean nitrate concentrations, 0.16 to 0.17 g m–3, found over the equatorial Pacific at Fanning Island (3°55N, 159°20W) and Nauru (0°32S, 166°57E). The lack of correlation between nitrate and nss sulfate at American Samoa does not necessarily preclude an important role for marine biogenic sources.  相似文献   
4.
In this study, the hydrodynamics of lower Ganges basin in India has been monitored using radar altimetry data from environmental satellite (ENVISAT) mission and microgravity data from the Gravity Recovery and Climate Experiment (GRACE) mission. River stage time series have been constructed for different virtual stations on the lower Ganges. Time series for the integrated water volume changes from microgravity measurements have also been constructed to characterize the seasonal and interannual fluctuation patterns in water storage and flux. The ENVISAT dataset indicates an average seasonal river stage fluctuation of 8 m in the lower Ganges River. The GRACE dataset reveals a seasonal fluctuation ranging from 0.18 to 0.40 m in the vertically integrated total water storage in the lower Ganges basin. The two independent datasets show broad similarity in the lower Ganges basin and outline the importance of space-based techniques for monitoring continental water resources.  相似文献   
5.
The dynamics and the aerosol chemistry of the air masses reaching the free troposphere of the subtropical Northeast Atlantic region during the period 1995–98 have been studied. Seven days backward trajectories were calculated daily with HYSPLIT-4 model for Izaña Global Atmospheric Watch (GAW) Observatory (28.3°N 16.5°W, 2367 m a.s.l.). These back-trajectories were classified by means of a k-means clustering strategy. The daily air masses have been coded using 16 variables to detect the aerosol load of each one of them. Four clusters were found: Cluster 1, representative of Atlantic oceanic middle troposphere air masses, (OMT), has an average frequency of occurrence of 50.6%. Cluster 2, which includes air masses originated in the African continent (AfD), has been recorded in a 19.8% of time. Cluster 3 represents a mixture at least of two of the next sources: Europe, Africa and Ocean, (EAM), with a frequency of 12.7%. Finally, Cluster 4 includes air masses with a high load of maritime aerosols, (MaA), and it has been detected in a 16.9%. An analysis of four aerosol components: NO3 ?, NH4 +, non-sea-salt-SO4 2?, and mineral dust and its relation with the origin and transport of the air masses have been done. The highest quantities of mineral dust and nss-SO4 2? are linked with African air masses with a mean value of 86.5 and 1.9 μg/m3 respectively. Whereas the highest levels of NO3 ?, 1.0 μg/m3, and NH4 +, 0.4 μg/m3, were obtained for AfD and EAM. The lowest levels were associated with OMT and MaA air masses types: 12.7, 0.6, 0.2, and 0.5 μg/m3 for dust, NO3 ?, NH4 +, and nss-SO4 2? in average for the four studied years. However, it is remarkable that the values of the median for dust are 2.2 and 3.5 μg/m3 in clusters MaA and OMT respectively. Using non-parametric statistical tests the distributions of concentrations in each cluster by year have been compared in order to detect similarities. The results show that the aerosol loads of OMT and MaA air masses are quite similar and the same occurs for AfD and EAM air masses. However, the correlation analysis between the levels of anions and ammonium evidenced important differences among the air mass types. In AfD air masses is clear a low correlation between levels of nss-SO4 2? and NH4 + (r 2 = 0.08) suggesting that the sulfate speciation was dominated by sulfate species others than ammonium sulfate, such as calcium sulfate. CaSO4 ?2H2O (gypsum) is mainly present in the coarse mode, where the radiative effects of sulfate are less important that in the accumulative mode. For OMT air masses is noticeable an important increasing on the correlation between the levels of anions and those of NH4 + for the two last years of the study period (1997–1998, r 2 = 0.61 –0.85%) with respect to the first ones (1995–1996, r 2 = 0.25–0.49%), coinciding with the second strongest ENSO (El Niño Southern Oscillation) event recorded. This behavior indicates a change in the speciation of the aerosol component.  相似文献   
6.
Shear Strength Development with Burial in Eel River Margin Slope Sediments   总被引:1,自引:0,他引:1  
As part of the STRATAFORM project, a series of cores were obtained from the Eel River Margin area of Eureka, California. The geotechnical analysis of intact specimens and of reconstituted samples provides some insight on the development of shear strength with burial. The results show the effect of bioturbation in the early part of the lifetime of a sediment. SEDCON tests were used to proposed various relationships which help predict the changes in density, liquidity index, and strength as a function of depth. These relationships are found useful from near the water sediment-interface down to a depth of at least 400 m in the sediment column.  相似文献   
7.
Concentrations of aerosol methanesulfonic acid (MSA) and non-sea-salt (nss) sulfate were measured at six island stations in the Pacific Ocean to investigate regional and seasonal patterns of organosulfur emissions and the origin of nss sulfate over the Pacific. The mean MSA concentrations, in g/m3, at the stations were: Shemya, 0.097±0.098; Midway, 0.029±0.021; Fanning, 0.044±0.012; American Samoa, 0.026±0.012; New Caledonia, 0.021±0.009; Norfolk, 0.024±0.019. The extremely high MSA levels found at Shemya indicate a major source of organosulfur emissions in the western North Pacific. Significant seasonal trends in MSA were observed, with higher MSA occurring during warm months. The amplitude of the seasonal variation was greatest at higher latitude stations. At Fanning and American Samoa, which have minimal input of continental material, there is a significant positive correlation between MSA and nss sulfate. MSA/nss sulfate ratios at other Pacific stations exhibit greater variability, which may be related to variations in: the input of continentally derived sulfate, the composition of oceanic organosulfur emissions, and atmospheric reaction pathways.  相似文献   
8.
High volume aerosol samples were collected continuously at Mawson, Antarctica (67°36'S, 62°30'E), from February 1987 through October 1989. All samples were analyzed for Na+, Cl-, SO4 =, NO3 -, methanesulfonate (MSA), NH4 +,7Be, and210Pb. The annual mean concentrations of many of the species are very low, substantially lower than even those over the relatively pristine regions of the tropical and subtropical South Pacific. The concentrations at Mawson are comparable both in magnitude and in seasonality to those which have been measured in long term studies at the South Pole and at the coastal German Antarctic research station, Georg von Neumayer (GvN). This comparability suggests that the aerosol composition may be relatively uniform over a broad sector of the Antarctic. The concentrations of most of the species exhibit very strong and sharply-defined seasonal cycles. MSA, non-sea-salt (nss) SO4 = and NH4 + all exhibit similar cycles, with maxima during the austral summer (December through February) being more than an order of magnitude higher than the winter minima. The limited7Be data appears to exhibit a similar cycle. Although nitrate and210Pb also exhibit relatively high concentrations during the austral summer, their cycles are far more complex than those of the previous species with indications of multiple peaks. As expected, the concentration of sea-salt (as indicated by Na+ and Cl-) peaks during the winter. The results from multiple variable regression analyses indicate that the dominant source of nss SO4 = is the oxidation of dimethylsulfide (DMS) which produces MSA and nss SO4 = in a ratio of about 0.31 (about five times higher than that over the tropical and subtropical oceans). However, a very significant fraction (about 25%) of the nss SO4 = is associated with NO3 -, The seasonal cycle of NO3 - is similar to that of210Pb and distinctly different from that of7Be and MSA. These results indicate that the major source of NO3 - over Antarctica is probably continental as opposed to stratospheric or marine biogenic.  相似文献   
9.
10.
As part of the STRATAFORM project, a series of cores were obtained from the Eel River Margin area of Eureka, California. The geotechnical analysis of intact specimens and of reconstituted samples provides some insight on the development of shear strength with burial. The results show the effect of bioturbation in the early part of the lifetime of a sediment. SEDCON tests were used to proposed various relationships which help predict the changes in density, liquidity index, and strength as a function of depth. These relationships are found useful from near the water sediment-interface down to a depth of at least 400 m in the sediment column.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号