首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   4篇
地球物理   12篇
地质学   2篇
海洋学   5篇
自然地理   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2011年   3篇
  2009年   3篇
  2006年   2篇
  1992年   4篇
排序方式: 共有20条查询结果,搜索用时 31 毫秒
1.
Seismic stratigraphic and main lithological features of the sedimentary cover overlying the basement of the Alboran Sea were established via the analysis of commercial multichannel seismic surveys, geophysical well logs, and well data. Six seismic stratigraphics units (VI to I), bounded by unconformities, form the marine sediments that range in age from early Miocene to Quaternary. They are dated by extrapolation of commercial drilling results from the northern Alboran Sea. Volcanic activity is recorded within sedimentary sequences of units V to II. Undercompaction features are detected in the two basal units.  相似文献   
2.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   
3.
Chlorophyll, primary production, zooplankton biomass and the species composition of phytoplankton and zooplankton were studied in 2003, after the Prestige shipwreck. The information obtained was compared to previous data series available for the area affected by the spill. A large data series on plankton variables for the N-NW Spanish coast existed, and therefore a realistic evaluation of the effects by comparison with the range of natural variability could be carried out. We emphasized the evaluation of impact during the spring bloom, the first important biological event after the spill. Some minor changes were observed occasionally, but they did not show any clear pattern and were more related to the natural variability of the ecosystem than to effect of the spill. Plankton community structure did not undergo any changes. Only a few species were more abundant during spring 2003 than in previous years. No significant changes were detected in the planktonic community during productive periods, such as the spring bloom and the summer blooms related to intrusions of East North Atlantic Central Waters. The lack of evidence of the effects of the spill on planktonic communities is discussed in terms of the characteristics of the fuel, the high dynamics of the water masses, the biological mechanisms through which the fuel from the surface waters is transferred to the sea floor and, particularly, the influence of the natural variability by means of large and meso-scale hydrographic processes in the area under study. At the present time it is not possible to determine any minor effects the spill may have had on the plankton owing to the great variability of the planktonic cycles and the short-term impact of the oil from the Prestige on the pelagic system.  相似文献   
4.
New paleomagnetic results from Neogene sedimentary sequences from the Betic chain (Spain) are here presented. Sedimentary basins located in different areas were selected in order to obtain paleomagnetic data from structural domains that experienced different tectonic evolution during the Neogene. Whereas no rotations have been evidenced in the Late Tortonian sediments in the Guadalquivir foreland basin, clockwise vertical axis rotations have been measured in sedimentary basins located in the central part of the Betics: the Aquitanian to Messinian sediments in the Alcalà la Real basin and the Tortonian and Messinian sediments in the Granada basin. Moreover, counterclockwise vertical axis rotations, associated to left lateral strike-slip faults have been locally measured from sedimetary basins in the eastern Betics: the Middle Miocene to Lower Pliocene sites from the Lorca and Vera basins and, locally, the Tortonian units of the Huercal-Overa basin. Our results show that, conversely from what was believed up to now, paleomagnetic rotations continued in the Betics after Late Miocene, enhancing the role of vertical axis rotations in the recent tectonic evolution of the Gibraltar Arc.  相似文献   
5.
The seafloor of the Alboran Sea in the western Mediterranean is disrupted by deformations resulting from convergence between the African and Eurasian plates. Based on a compilation of existing and new multibeam bathymetry data and high-resolution seismic profiles, our main objective was to characterize the most recent structures in the central sector, which depicts an abrupt morphology and was chosen to investigate how active tectonic processes are shaping the seafloor. The Alboran Ridge is the most prominent feature in the Alboran Sea (>130 km in length), and a key element in the Gibraltar Arc System. Recent uplift and deformation in this ridge have been caused by sub-vertical, strike-slip and reverse faults with associated folding in the most recent sediments, their trend shifting progressively from SW–NE to WNW–ESE towards the Yusuf Lineament. Present-day transtensive deformation induces faulting and subsidence in the Yusuf pull-apart basin. The Alboran Ridge and Yusuf fault zones are connected, and both constitute a wide zone of deformation reaching tens of kilometres in width and showing a complex geometry, including different active fault segments and in-relay folds. These findings demonstrate that Recent deformation is more heterogeneously distributed than commonly considered. A narrow SSW–NNE zone with folding and reverse faulting cuts across the western end of the Alboran Ridge and concentrates most of the upper crustal seismicity in the region. This zone of deformation defines a seismogenic, left-lateral fault zone connected to the south with the Al Hoceima seismic swarm, and representing a potential seismic hazard. Newly detected buried and active submarine slides along the Alboran Ridge and the Yusuf Lineament are clear signs of submarine slope instability in this seismically active region.  相似文献   
6.
We analysed the space–time structure of two spatially explicit forest data sets considering the associated growth function for each tree obtained from the annual radial growth measured from increment cores bored at breast height. We used a new second order formulation based on the mark correlation function, the functional mark correlation function, to analyse spatial pattern involving functions to each spatial location. A decomposition of individual growth function into spatial and non-spatial components was considered and only the spatial components were analysed. Our results confirm the usefulness of these new approach compared with other well-established spatial statistical tools such as the mark correlation function. In particular, the functional mark correlation function of the spatial and temporal components of tree growth determines the space–time structure of tree development regardless of the non-spatial components contained in this function. Moreover, this explicit temporal analysis detects space–time interaction effects that are not evident when analysing the spatial distribution of cumulative growth measures such as the tree basal area.  相似文献   
7.
In the critical zone, surficial bedrock interactions result in the formation of a mantle of chemically‐ and physically‐altered material defined here as regolith. In the watershed of the Río Icacos, an upland river draining the Luquillo Mountains in tropical Puerto Rico, we explored the influence of lithology (quartz diorite versus hornfels‐facies volcaniclastic rock) on weathering. Regolith profiles were studied by drilling boreholes and imaging the subsurface using ground penetrating radar (GPR). Overall, the regolith structure is not laterally continuous but rather is punctuated by zones of deep fractures that host in situ weathering, corestones, and colluvial material. GPR images of these vertical zones show reflectors at 15–20 m depth. Thus, the architecture of the critical zone in the upper Luquillo Mountains is highly dependent on lithology and its influence on fracture development. At the highest elevations where hornfels overlies quartz diorite, positive feedbacks occur when the water table drops so that oxidative weathering of biotite in the more felsic rock creates microfractures and allows deeper infiltration of meteoric waters. Such exposure results in some of the fastest weathering rocks in the world and may contribute to formation of the knickpoint in the Río Icacos watershed. This work represents the first study combining GPR and drilling to look at the structure of the deep critical zone and demonstrates: (1) the importance of combining direct methods (such as drilling) with indirect methods (such as GPR) to understand the architecture of the critical zone in tropical systems; (2) the interplay of the surficial stress regime, lithology and climate in dictating the architecture of weathering. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
8.
The Rio Icacos watershed in the Luquillo Mountains (Puerto Rico) is unique due to its extremely rapid weathering rates. The watershed is incised into a quartz diorite that has developed a large knickzone defining the river profile. Regolith thickness within the watershed generally decreases from 20 to 30 m at the ridges to several meters in the quartz diorite-dominated valley to tens of centimeters near the major river knickpoint, as determined from previous studies. Above the knickzone, we observe spheroidal corestones, but below this weathering is much less apparent. Measured erosion rates from previous studies are also high in the knickzone compared with upper elevations within the river profile. A suite of near-surface geophysical methods (i.e. ground penetrating radar and terrain conductivity) capable of fast data acquisition in rugged landscapes, was deployed at kilometer scales to characterize critical zone structure. Concentrations of chaotic ground penetrating radar (GPR) reflections and diffraction hyperbolas with low electrical conductivity were observed in vertical zones that outcrop at the land surface as areas of intense fracturing and spheroidally weathered corestones. The width of these fractured and weathered zones showed an increase with proximity to the knickpoint, and was attributed to dilation of these sub-vertical fractures near the knickpoint, as postulated theoretically by a stress model calculated for the topographic variability across the knickzone in the Rio Icacos, and that shows a release of compressive stress near the knickpoint. We hypothesize that erosion rates increase in the knickzone because of this inferred dilation of fractures. Specifically, opened fractures could enhance access of water and in turn promote spalling, erosion, and spheroidal weathering. This study shows that ground-based hydrogeophysical methods used at the landscape-scale (traditionally applied at smaller scales) can be used to explore critical zone architecture at the scales needed to explain the extreme variability in erosion rates across river profiles. © 2018 John Wiley & Sons, Ltd.  相似文献   
9.
Northern peatlands are a large source of atmospheric methane (CH4) and both a source and a sink of atmospheric carbon dioxide (CO2). The rate and temporal variability in gas exchanges with peat soils is directly related to the spatial distribution of these free‐phase gases within the peat column. In this paper, we present results from surface and borehole ground‐penetrating radar surveys – constrained with direct soil and gas sampling – that compare the spatial distribution of gas accumulations in two raised bogs: one in Wales (UK), the other in Maine (USA). Although the two peatlands have similar average thickness, physical properties of the peat matrix differ, particularly in terms of peat type and degree of humification. We hypothesize that these variations in physical properties are responsible for the differences in gas distribution between the two peatlands characterized by (1) gas content up to 10.8% associated with woody peat and presence of wood layers in Caribou Bog (Maine) and (2) a more homogenous distribution with gas content up to 5.7% at the surface (i.e. <0.5 m deep) in Cors Fochno (Wales). Our results highlight the variability in biogenic gas accumulation and distribution across peatlands and suggest that the nature of the peat matrix has a key role in defining how biogenic gas accumulates within and is released to the atmosphere from peat soils. © 2015 The Authors. Hydrological Processes published by John Wiley & Sons Ltd.  相似文献   
10.
Point process theory plays a fundamental role in the analysis and modelling of spatial forest patterns. For instance, the Ripley’s K function and its density with respect to the area, i.e. the pair correlation function, have been extensively used to analyse and characterise stationary forest configurations. However, the stationarity condition is not often met in practice when analysing real data. Thus, the development and application of new statistics to measure the degree of inhomogeneity suggests the use of inhomogeneous statistics to describe forest stands. In this paper, we restrict our attention to the inhomogeneous pair correlation function in the context of replicated spatial data. We then analyse the spatial configuration of pure and mixed conifer stands in a case study in Central Catalonia, North-East of Spain. Our results suggest that whilst P. sylvestris tend to be aggregated for short inter-tree distances, P. nigra and P. halepensis keep a minimum inter-event distance between trees. Regarding the mixed stands, trees of distinct species tend to be segregated from each other. Tentative explanations for these results are related with site properties, competition effects, shade tolerance and silviculture practices applied in this forest region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号