首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   2篇
地质学   2篇
海洋学   1篇
自然地理   1篇
  2013年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有6条查询结果,搜索用时 140 毫秒
1
1.
Three experimental plots, covering the transition from the upper beach to the dune, on the North Sea coast of France were monitored at various intervals over a period of 18–24 months via high resolution terrain surveys in order to determine inter-site sand budget variability, as well as patterns and processes involved in sand exchanges between the upper beach and dune. The wind regime consists of a fairly balanced mix of moderate (80% of winds are below 8 m/s) onshore, offshore and shore-parallel winds. Sustained dune accretion over several years depends on the periodic local onshore welding of shoreface tidal banks that have developed in the storm- and tide-dominated setting of the southern North Sea. The only site where this has occurred in the recent past is Calais, where bank welding has created a wide accreting upper beach sand flat. At this site, significant sand supply from the subtidal sand bank reservoir to the upper beach flat occurred only once over the 18-month survey following a major storm. The bulk of the sand deposited over this large flat is not directly integrated into the adjacent embryo dunes by onshore winds but is progressively reworked in situ into developing dunes or transported alongshore by the balanced wind regime, thus resulting in alongshore stretching of the embryo dune system. The Leffrinckoucke site near Belgium shows moderate beach–dune mobility and accretion, while the Wissant site exhibits significant upper beach bedform mobility controlled by strong longshore currents that result in large beach budget fluctuations with little net budget change, to the detriment of the adjacent dunes. Accretion at these two sites, which are representative of the rest of the North Sea coast of France, is presently constrained by the absence of a shore-attached sand bank supply reservoir, while upper beach–dune sand exchanges are further limited by the narrow wave-affected upper beach, the intertidal morphology of bars and troughs which segments the aeolian fetch, and the moderate wind energy conditions. The balanced wind regime limits net sand mobilisation in favour of either the beach or the dune, and may explain the relatively narrow longshore morphology of the dune ridges bounding this coast.  相似文献   
2.
Sediment budget data from an 18‐month topographic survey were analysed with data from brief experiments on wind parameters, beach moisture contents, bedforms and sand mobilization in order to monitor conditions and patterns of embryo dune development over a flat 150–1000 m wide accreting upper beach. The surface conditions over the upper beach locally affect aeolian transport, but net dune development over time depends on sustained strong winds and their orientation. Incoming marine sand supplied by storms and onshore winds is reorganized by the dominant offshore to longshore winds into elongated embryo dunes over this upper beach, imprinting a regional morphology of long‐term longshore dune ridge development. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
3.
Along the southern coast of the North Sea, a large proportion of the Flemish coastal plain consists of densely populated reclaimed land, much of which lying below mean high tide level. This is particularly the case along the northern coast of France, from Dunkirk to the Belgium border, where the shoreline consists of coastal dunes that protect low-lying reclaimed lands from marine flooding. This area is vulnerable and subject to several risks. Extreme weather conditions could induce strong surges that could cause (1) a shoreline retreat, (2) marine submersion and (3) land and/or urban flooding due to drainage problems of the polders. Highly energetic events such as the November 2007 storm could have had much more severe consequences especially if they occurred at high tide and/or during a spring tide. In the current context of global change and projected sea-level rise, it is then important for the local authorities to take into account the potential impacts and return periods of such events, in order to implement coastal risk policies prevention and management, to reinforce sea defense, increase pumping station efficiency and plan warning systems against marine submersion and polder flooding, which is not the case yet in Northern France.  相似文献   
4.
Coccoliths were studied from the ODP Hole 1002C and core PL07‐39PC in the Cariaco Basin. Increases in Emiliania huxleyi are synchronous with decreases of Gephyrocapsa oceanica and vice versa. A new index (GEX) based on the relative abundances of these two taxa is proposed, and correlates with various other proxies. It is shown that GEX can serve as upwelling proxy. This confirms that the Intertropical Convergence Zone shifted north during the Bølling/Allerød, south during the Younger Dryas and back north during the Preboreal. The upwelling proxy shows few discrepancies with the terrigenous record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
5.
The morphological impact of storms on coastal accumulations varies considerably in space along the coast of western France. At some locations, the storm produces erosion, whereas at others, impacts may vary from erosion to accumulation, or no effect. This is explained by the variability of incident waves. Wave amplitude variability, cross-checked with wave direction variability, is presented on a phase diagram and shows that the response of the coast is not linked to the absolute values reached during the storm, but to changes in wave patterns that take place during the event. The morphology of the bottom (skerries, banks) is greatly forcing these changes because of the high tidal range and the complicated and fast-changing patterns of refraction. Locations with a flat seafloor have an almost predictable response to storms. Places with a complex submarine morphology have a response characterized by high variability. The variability of the wave pattern during a half tidal cycle storm (from low tide at 1 m to high tide at 13 m in 6 h) is a microscale equivalent of the variability of wave patterns changing during sea level rise in the Holocene (from −7 to 0 m in 6 ka). This fact explains why, during the late Holocene, the same locations (1) have displayed a very chaotic response to sea level rise and (2) are displaying, today, a highly variable response to storms. In that respect, seafloor morphology is a mesoscale to macroscale control on beach/barrier behaviour.  相似文献   
6.
Before the 1991–1992 activity, a large andesite lava dome belonging to the penultimate Pinatubo eruptive period (Buag ∼ 500 BP) formed the volcano summit. Buag porphyritic andesite contains abundant amphibole-bearing microgranular enclaves of basaltic–andesite composition. Buag enclaves have lower K2O and incompatible trace element (LREE, U, Th) contents than mafic pulses injected in the Pinatubo reservoir during the 1991–1992 eruptive cycle. This study shows that Buag andesite formed by mingling of a hot, water-poor and reduced mafic magma with cold, hydrous and oxidized dacite. Depending on their size, enclaves experienced variable re-equilibration during mixing/mingling. Re-equilibration resulted in hydration, oxidation and transfer of mobile elements (LILE, Cu) from the dacite to the mafic melts and prompted massive amphibole crystallization. In Buag enclaves, S-bearing phases (sulfides, apatite) and melt inclusions in amphibole and plagioclase record the evolution of sulfur partition among melt, crystal and fluid phases during magma cooling and oxidation. At high temperature, sulfur is partitioned between andesitic melt and sulfides (Ni-pyrrhotite). Magma cooling, oxidation and hydration resulted in exsolution of a S–Cl–H2O vapor phase at the S-solubility minimum near the sulfide–sulfate redox boundary. Primary magmatic sulfide (pyrrhotite) and xenocrystic sulfide grains (pyrite), recycled together with olivines and pyroxenes from old mafic intrusives, were replaced by Cu-rich phases (chalcopyrite, cubanite) and, partially, by Ba–Sr sulfate. Sulfides degassed and transformed into residual spongy magnetite in response to fS2 drop during final magma ascent and decompression. Our research suggests that a complete evaluation of the sulfur budget at Pinatubo must take into account the en route S assimilation from the country rocks. Moreover, this study shows that the efficiency of sulfur transfer between mafic recharges and injected magmas is controlled by the extent and rate of mingling, hydrous flushing and melt oxidation. Vigorous mixing/mingling and transformation of the magmatic recharge into a spray of small enclaves is required in order to efficiently strip their primary S-content that otherwise remains locked in the sulfides. Hydrous flushing increases the magma oxidation state of the recharges and modifies their primary volatile concentrations that cannot be recovered by the study of late-formed mineral phases and melt inclusions. Conversely, S stored in both late-formed Cu-rich sulfides and interstitial rhyolitic melt represents the pre-eruptive sulfur budget immediately available for release from mafic enclaves during their decompression.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号