首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
海洋学   4篇
  2011年   1篇
  2005年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Primary production, nutrient concentrations, phytoplankton biomass (incl. chlorophyll a) and water transparency (Secchi depth), are important indicators of eutrophication. Earlier basin-wide primary production estimates for the Baltic Sea, a shallow shelf sea, were based mainly on open-sea data, neglecting the fundamentally different conditions in the large river plumes, which might have substantially higher production. Mean values of the period 1993–1997 of nutrient concentrations (phosphate, nitrate, ammonium and silicate), phytoplankton biomass, chlorophyll a (chl a) concentration, turbidity and primary production were calculated in the plumes of the rivers Oder, Vistula and Daugava and Klaipeda Strait as well as the open waters of the Arkona Sea, Bornholm Sea, eastern Gotland Sea and the Gulf of Riga. In the plumes, these values, except for primary production, were significantly higher than in the open waters. N:P ratios in the plumes were >16 (with some exceptions in summer and autumn), indicating potential P-limitation of phytoplankton growth, whereas they were <16 in the open Baltic Proper, indicating potential N-limitation. On the basis of in situ phytoplankton primary production, phytoplankton biomass and nutrient concentrations, the large river plumes and the Gulf of Riga could be characterized as eutrophic and the outer parts of the coastal waters and the open sea as mesotrophic. Using salinity to define the border of the plumes, their mean extension was calculated by means of a circulation model. Taking into account the contribution of coastal waters, the primary production in the Baltic Proper and the Gulf of Riga was 42·6 and 4·3×106 t C yr−1, respectively. Hence, an annual phytoplankton primary production in the whole Baltic Sea was estimated at 62×106 t C yr−1. The separate consideration of the plumes had only a minor effect on the estimation of total primary production in comparison with an estimate based on open sea data only. There is evidence for a doubling of primary production in the last two decades. Moreover, a replacement of diatoms by dinoflagellates during the spring bloom was noticed in the open sea but not in the coastal waters. A scheme for trophic classification of the Baltic Sea, based on phytoplankton primary production and biomass, chl a and nutrient concentrations, is proposed.  相似文献   
3.
A recent historical marine ecological case study (cod in the eastern Baltic Sea) is used to show how long-term data and knowledge of fluctuations can contribute to revisions of fishery management policy. The case study first developed new longer analytical time series of spawner biomass and recruitment back to the 1920s, which extended knowledge of population dynamics into a time period when ecosystem state was characterized by temporally varying combinations of exploitation, climate-hydrographic conditions, marine mammal predation and eutrophication. Recovery of spatially resolved historical catch data from the late 1500s to early 1600s also contributed new perspectives to cod population dynamics under alternative ecosystem forcings. These new perspectives have contributed, and will likely continue to contribute to new management policies (e.g., revision of fishery management reference points), which should lead to higher sustainability of the population and fishery yields, and improved overall ecosystem health. These perspectives will likely continue to provide baseline information as ICES and the EU develop new policies based on maximum sustainable yield concepts.  相似文献   
4.
Henn Ojaveer   《Limnologica》1999,29(3):224
The main exploitable biological resources in the Estonian zone of the Baltic Sea are fish stocks. Fishes of marine origin constitute the main bulk (on the average 91%) of catches. Some freshwater and migratory fishes, having usually only marginal role in the total weight of fish landings, are of special importance for local fishermen in certain regions. Other living resources — red algae and seals-have been exploited in rather small amounts.The main factors having controlled changes in the condition of fish stocks and catches are natural conditions, marine pollution, eutrophication and exploitation rate.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号