首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
地球物理   5篇
地质学   15篇
海洋学   1篇
天文学   16篇
  2022年   1篇
  2020年   1篇
  2018年   3篇
  2016年   3篇
  2015年   2篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1983年   1篇
  1978年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
The weathering crust of the Beden ultrabasite massif (the basin of Big Laba River) is identified and studied. Anomalously high contents of noble metals (Au, Pt, Pd) are revealed in the basal horizon of the Jurassic part of the weathering crust. For this reason we suspect an existence of a belt of noble metal miner-alization in the Paleozoic ultrabasites in the Peredovoi Range of the Northern Caucasus.  相似文献   
2.
Geochemistry of chlorine and fluorine in apatites, micas, and amphiboles in rocks from eight intrusive complexes of the Siberian Platform has been first studied on the basis of new factual and analytical data (more than 1000 analyses). The main attention is focused on minerals from layered intrusions. Most apatites show F > Cl; the maximum contents of halogens are specific to chlorapatite (6.97 wt.% Cl) and fluorapatite (6.04 wt.% F). The total f value (f = Fe/(Fe + Mg), at.%) of femic minerals varies from 2 to 98 at.% in micas and from 22 to 95 at.% in amphiboles. The Cl-f and F-f trends show an increase in the Cl content and a decrease in the F content in the minerals with increasing f. Chlorine clearly exhibits ferrophilic properties, and fluorine has magnesiophilic properties. The halogen-richest minerals are fluorophlogopite (F = 7.06 wt.%, f = 7 at.%), chlorannite (Cl = 6.30 wt.%, f = 89 at.%), and chloroferrihastingsite (Cl = 5.22 wt.%, f = 90 at.%). Coexisting micas and amphiboles in the rocks are close in f value, but the micas are richer in Cl than the amphiboles. We assume that the halogen-containing minerals crystallized at the high pressure of halogen-hydrocarbon fluids at the levels of the MW, IW, and QIF buffers. The reducing conditions of the magmatism process are also evidenced by the presence of graphite and native metals in the rocks. The similarity of the Cl-f and F-f trends of micas and amphiboles from different intrusive complexes indicates the same mechanisms of the melt differentiation and mineral crystallization.  相似文献   
3.
The source of sulfur in giant Norilsk-type sulfide deposits is discussed. A review of the state of the problem and a critical analysis of existing hypotheses are made. The distribution of δ34S in sulfides of ore occurrences and small and large deposits and in normal sedimentary, metamorphogenic, and hypogene sulfates is considered. A large number of new δ34S data for sulfides and sulfates in various deposits, volcanic and terrigenous rocks, coals, graphites, and metasomatites are presented. The main attention is focused on the objects of the Norilsk and Kureika ore districts. The δ34S value varies from -14 to + 22.5‰ in sulfides of rocks and ores and from 15.3 to 33‰ in anhydrites. In sulfide-sulfate intergrowths and assemblages, δ34S is within 4.2-14.6‰ in sulfides and within 15.3-21.3‰ in anhydrites. The most isotopically heavy sulfur was found in pyrrhotite veins in basalts (δ34S = 21.6‰), in sulfate veins cutting dolomites (δ34S = 33‰), and in subsidence caldera sulfates in basalts (δ34S = 23.2-25.2‰). Sulfide ores of the Tsentral’naya Shilki intrusion have a heavy sulfur isotope composition (δ34S = + 17.7‰ (n = 15)). Thermobarogeochemical studies of anhydrites have revealed inclusions of different types with homogenization temperatures ranging from 685 °C to 80 °C. Metamorphogenic and hypogene anhydrites are associated with a carbonaceous substance, and hypogene anhydrites have inclusions of chloride-containing salt melts. We assume that sulfur in the trap sulfide deposits was introduced with sulfates of sedimentary rocks (δ34S = 22-24‰). No assimilation of sulfates by basaltic melt took place. The sedimentary anhydrites were “steamed” by hydrocarbons, which led to sulfate reduction and δ34S fractionation. As a result, isotopically light sulfur accumulated in sulfides and hydrogen sulfide, isotopically heavy sulfur was removed by aqueous calcium sulfate solution, and “residual” metamorphogenic anhydrite acquired a lighter sulfur isotope composition as compared with the sedimentary one. The wide variations in δ34S in sulfides and sulfates are due to changes in the physicochemical parameters of the ore-forming system (first of all, temperature and Pch4) during the sulfate reduction. The regional hydrocarbon resources were sufficient for large-scale ore formation.  相似文献   
4.
5.
6.
Izvestiya, Atmospheric and Oceanic Physics - The vertical component of the electric field Ez in the hydrosphere is not contaminated by the telluric component and therefore can effectively be used...  相似文献   
7.
8.
9.
Charged particle motion in magnetoactive plasma with an axially symmetric electrostatic field has been studied. It has been indicated that a difference between drift velocities of electrons and ions leads to a magnetic field disturbance. The equations for stationary magnetic field disturbances stretched along the magnetic field, which can be magnetic ducts for propagation of whistlers, have been obtained. The possibility of formation of such ducts by electrostatic fields from thunderstorm sources, penetrating into the ionosphere, has been estimated.  相似文献   
10.
The electron paramagnetic resonance (EPR) study of gammaor x-ray-irradiated natural barite and celestite has revealed the presence of a radiation center with principal values of the g tensor and the A tensor [MHz] of hyperfine interaction (from the 33S isotope): gxx=1.9963, gyy=2.0073, gzz=2.0025, Axx=434, Ayy=447, Azz=528 in BaSO4, gxx=1.9990, gyy=2.0075, gzz=2.0027, Axx=426, Ayy=439, Azz=520 in SrSO4. The center has been identified as SO 3- 4 radical. The electron centers SO 4 3- in barite have been found to be produced along with the hole centers SO 4 3- , and maximum concentration of both centers is reached at a gamma-ray-radiation dose of about 5·105 Gy. UV or thermal treatment causes both centers to disappear. The SO 4 3- radicals proved to be more thermally stable than the SO 4 3- radicals: within about 0.5 h the latter disappear at 125° C, whereas the former do so at 180° C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号