首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
大气科学   1篇
地质学   8篇
海洋学   1篇
自然地理   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   3篇
  1997年   1篇
  1995年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有11条查询结果,搜索用时 359 毫秒
1.
2.
The Messinian Vena del Gesso Basin in the Northern Apennines is filled by very thick (up to 35 m) beds of coarse crystalline gypsum (selenite) associated with thinner carbonate and shaly (euxinic) intercalations. The conventional Usiglio model of salt fractionation does not apply to this evaporitic sequence for the following reasons: carbonate which underlies gypsum is not evaporitic but algal in origin; most gypsum did not precipitate from surface brines but at and below a sediment-water interface occupied by algal mats; a significant portion (10–80%) of gypsum beds is composed of redeposited selenite which was removed from the margins and transported toward the centre of the basin by slope-controlled currents and gravity flows (debris flows). We call this process cannibalistic because of its intraformational character (connected with evaporative fall of water level) and volumetric importance. A recurrent vertical pattern of six main facies (euxinic to gypsum fanglo-merates) is interpreted as a bathymetric, regressive cycle controlled by both sedi-mentological and tectonic-eustatic factors. The inferred environmental setting is a residual turbidite trough (Marnoso-arenacea) evolving abruptly toward lagoonal conditions and filled up to sea level by evaporitic and mechanical (mostly fluvial) processes. Repeated inundations of restricted-marine water started the depositional cycle thirteen or fourteen times.  相似文献   
3.
The study of mammalian faunas has contributed widely to the knowledge of palaeoenvironments during the Quaternary. The cenogram method, a graphical representation of the mammalian community structure, permits the reconstruction of the environments and the inference of the climatic conditions. This method has the advantage of taking into account all the mammals present in a fossil locality. Applied on several faunas of the South of France, this method shows different phases in the climatic and environmental changes during the Pleistocene. From the setting-up of glacial cycles in the Pleistocene, the conditions become colder and there is an alternation between a rather closed environment during the interglacial periods and a more open landscape during the coldest periods of the Pleistocene.  相似文献   
4.
5.
6.
Northern Victoria Land is a key area for the Ross Orogen – a Palaeozoic foldbelt formed at the palaeo‐Pacific margin of Gondwana. A narrow and discontinuous high‐ to ultrahigh‐pressure (UHP) belt, consisting of mafic and ultramafic rocks (including garnet‐bearing types) within a metasedimentary sequence of gneisses and quartzites, is exposed at the Lanterman Range (northern Victoria Land). Garnet‐bearing ultramafic rocks evolved through at least six metamorphic stages. Stage 1 is defined by medium‐grained garnet + olivine + low‐Al orthopyroxene + clinopyroxene, whereas finer‐grained garnet + olivine + orthopyroxene + clinopyroxene + amphibole constitutes the stage 2 assemblage. Stage 3 is defined by kelyphites of orthopyroxene + clinopyroxene + spinel ± amphibole around garnet. Porphyroblasts of amphibole replacing garnet and clinopyroxene characterize stage 4. Retrograde stages 5 and 6 consist of tremolite + Mg‐chlorite ± serpentine ± talc. A high‐temperature (~950 °C), spinel‐bearing protolith (stage 0), is identified on the basis of orthopyroxene + clinopyroxene + olivine + spinel + amphibole inclusions within stage 1 garnet. The P–T estimates for stage 1 are indicative of UHP conditions (3.2–3.3 GPa and 764–820 °C), whereas stage 2 is constrained between 726–788 °C and 2.6–2.9 GPa. Stage 3 records a decompression up to 1.1–1.3 GPa at 705–776 °C. Stages 4, 5 and 6 reflect uplift and cooling, the final estimates yielding values below 0.5 GPa at 300–400 °C. The retrograde P–T path is nearly isothermal from UHP conditions up to deep crustal levels, and becomes a cooling–unloading path from intermediate to shallow levels. The garnet‐bearing ultramafic rocks originated in the mantle wedge and were probably incorporated into the subduction zone with felsic and mafic rocks with which they shared the subsequent metamorphic and geodynamic evolution. The density and rheology of the subducted rocks are compatible with detachment of slices along the subduction channel and gravity‐driven exhumation.  相似文献   
7.
8.
In this article a technique is presented to estimate the proportions of different map categories in a series of heterogeneous mapping units, using information on the degree of spatial correlation with other categorical data. The technique has been applied to decompose ecotope complexes in a categorical map of the biotic environment in Flanders, using secondary information on land cover and soil type. Because the conditional probability of an ecotope occurring given a certain soil type depends on the frequency with which the ecotope occurs in an area, determining the probability of occurrence of an ecotope from the conditional probabilities can lead to predictions that contradict prior knowledge about the composition of the different mapping units. A measure expressing the affinity of an ecotope for a soil type is proposed and is used as an alternative to conditional probability in the estimation procedure. The proposed method has been tested in a study area for which detailed field observations were collected, and proves to work well if reliable a priori knowledge about the composition of complex mapping units is available.  相似文献   
9.
Ultramafic (lherzolites, metasomatized peridotites, harzburgites,websterites and clinopyroxenites) and mafic igneous (basalts,dolerites, diorites and gabbros) rocks exposed at the sea-flooralong the West Iberia continental margin represent a rare opportunityto study the transition zone between continental and oceaniclithosphere. The igneous rocks are enriched in LREE, unlikeNorth Atlantic MORB. A correlation between their 143Nd/144Ndisotopic composition and Ce/Yb ratio suggests that they originatefrom mixing between partial melts of a depleted mantle sourcesimilar to DMM and of an enriched mantle source which may residewithin the continental lithosphere. Clinopyroxenes and amphibolesin the ultramafic rocks are LREE depleted and have flat HREEpatterns with concentrations higher than those of abyssal peridotites.Clinopyroxenes in the harzburgites are less LREE depleted buthave lower HREE concentrations. The clinopyroxenes in the GaliciaBank (GB) lherzolites have radiogenic Nd (143Nd/144Nd rangingfrom 0·512937 to 0·513402) and unradiogenic Sr(87Sr/86Sr ranging from 0·702100 to 0·702311)isotopic ratios similar to, or higher than, DMM (Depleted MORBMantle) whereas the clinopyroxenes in the Iberia Abyssal Plainwebsterites have low-Nd isotopic compositions (143Nd/144Nd rangingfrom 0·512283 to 0·512553) with high-Sr isotopicratios (87Sr/86Sr ranging from 0·704170 to 0·705919).Amphiboles in Galicia Bank lherzolites and diorites have Nd–Srisotopic compositions (143Nd/144Nd from 0·512804 to 0·512938and 87Sr/86Sr from 0·703243 to 0·703887) intermediatebetween those of the clinopyroxenes from the Galicia Bank andthe Iberia Abyssal Plain, but similar to the clinopyroxenesin the 5100 Hill harzburgite (143Nd/144Nd = 0·512865and 87Sr/86Sr = 0·703591) and to the igneous rocks (143Nd/144Ndranging from 0·512729 to 0·513121 and 87Sr/86Srranging from 0·702255 to 0·705109). The majorand trace element compositions of cpx in the Galicia Bank spinellherzolites provide evidence for large-scale refertilizationof the lithospheric upper mantle by MORB-like tholeiitic melts.The associated harzburgites did not undergo partial meltingduring the rifting stage, but, in earlier times, probably during,or even before, the Hercynian orogeny. Iberia Abyssal Plainwebsterites are interpreted as high-pressure cumulates formedin the mantle. Their high Sm/Nd ratios (from 0·43 to0·67) coupled with very low-Nd isotopic compositionsare best explained by a two-stage history: formation of thecumulates from the percolation of enriched melts long beforethe rifting, followed by low-degree partial melting of the pyroxenites,accounting for their LREE depletion. This last event probablyoccurs during the rifting episode, 122 Myr ago. The isotopicheterogeneities observed in the ultramafic rocks of the Iberiamargin were already present at the time of the rifting event.They reflect a long and complex history of depletion and enrichmentevents in an old part of the mantle, and provide strong argumentsfor a sub-continental origin of this part of the upper mantle. KEY WORDS: Iberia margin; mantle peridotites; igneous rocks; petrology; geochemistry  相似文献   
10.
A new genetic facies model for deep-water clastic evaporites is presented, based on work carried out on the Messinian Gessoso-solfifera Formation of the northern Apennines during the last 15 years. This model is derived from the most recent siliciclastic turbidite models and describes the downcurrent transformations of a parent flow mainly composed of gypsum clasts. The model allows clearer comprehension of processes controlling the production and deposition of clastic evaporites, representing the most common evaporite facies of the northern Apennines, and the definition of the genetic and stratigraphic relationship with primary shallow-water evaporites formed and preserved in marginal settings. Due to the severe recrystallization processes usually affecting these deposits, petrographic and geochemical analyses are needed for a more accurate interpretation of the large spectrum of recognized gravity-driven deposits ranging from debrisflow to low-density turbidites. Almost all the laminar ‘balatino’ gypsum, previously considered a deep-water primary deposit, is here reinterpreted as the fine-grained product of high to low-density gravity flows. Facies associations permit the framing of the distribution of clastic evaporites into the complex tectonically controlled depositional settings of the Apennine foredeep basin. The Messinian Salinity Crisis occurred during an intense phase of geodynamic reorganization of the Mediterranean area that also produced the fragmentation of the former Miocene Apennine foredeep basin. In this area, primary shallow-water evaporites equivalent to the Mediterranean Lower Evaporites, apparently only formed in semi-closed thrust-top basins like the Vena del Gesso Basin. The subsequent uplift and subaerial exposure of such basins ended the evaporite precipitation and promoted a widespread phase of collapse leading to the resedimentation of the evaporites into deeper basins. Vertical facies sequences of clastic evaporites can be interpreted in terms of the complex interplay between the Messinian tectonic evolution of the Apennine thrust belt and related exhumation–erosional processes. The facies model here proposed could be helpful also for better comprehension of other different depositional and geodynamic contexts; the importance of clastic evaporites deposits has been overlooked in the study of other Mediterranean areas. Based on the Apennine basins experience, it is suggested here that evaporites diffused into the deeper portions of the Mediterranean basin may consist mainly of deep-water resedimented deposits rather than shallow-water to supratidal primary evaporites indicative of a complete basin desiccation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号