首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地球物理   2篇
地质学   1篇
海洋学   1篇
  2018年   1篇
  2004年   1篇
  2001年   2篇
排序方式: 共有4条查询结果,搜索用时 62 毫秒
1
1.
Most behavioral studies on hermaphroditic fishes have focused on small‐sized species, which are tractable for research. Although many species of large hermaphroditic fishes are important fishery resources, their proximate mechanisms (visual, chemical and/or behavioral cues) in the social regulation of sex change have not been determined. Determination of these would inform resource management and aquaculture. In order to get closer to understanding the proximate mechanisms underlying the social regulation of female‐to‐male sex change in large hermaphroditic fishes, this study reports situations that induced female‐to‐male sex change in black‐spot tuskfish, Choerodon schoenleinii, a species of large protogynous fish, in massive laboratory tanks. The situations differed in the possibility of male‐to‐female tactile contact and in the group sex ratio, enabling us to infer plausible proximate mechanisms underlying sex change induction. Tactile contact between individuals is suspected to be closely related to the incidence of female‐to‐male sex change in C. schoenleinii. Visual and chemical cues alone may be insufficient to inhibit such sex changes. Male‐to‐female tactile contact may have an important influence on female‐to‐male sex change, i.e., inhibition of this sex change, in this species. The effect of sex ratio of a social group on the incidence of sex change may be due to the relative frequency and intensity of male tactile contact with each female, which may vary with the number of females. In the absence of a dominant male, tactile contact among females may affect the incidence of sex change, as well as determine which individuals change sex.  相似文献   
2.
Abstract Characteristics of deformation and alteration of the 1140 m deep fracture zone of the Nojima Fault are described based on mesoscopic (to the naked eye) and microscopic (by both optical and scanning electron microscopes) observations of the Hirabayashi National Research Institute for Earth Science and Disaster Prevention (NIED) drill core. Three types of fault rocks; that is, fault breccia, fault gouge and cataclasite, appear in the central part of the fault zone and two types of weakly deformed and/or altered rocks; that is, weakly deformed and altered granodiorite and altered granodiorite, are located in the outside of the central part of the fault zone (damaged zone). Cataclasite appears occasionally in the damaged zone. Six distinct, thin foliated fault gouge zones, which dip to the south-east, appear clearly in the very central part of the fracture zone. Slickenlines plunging to the north-east are observed on the surface of the newest gouge. Based on the observations of XZ thin sections, these slickenlines and the newest gouge have the same kinematics as the 1995 Hyogo-ken Nanbu earthquake (Kobe earthquake), which was dextral-reverse slip. Scanning electron microscopy observations of the freeze-dried fault gouge show that a large amount of void space is maintained locally, which might play an important role as a path for fluid migration and the existence of either heterogeneity of pore fluid pressure or strain localization.  相似文献   
3.
4.
Takashi Sawaguchi   《Tectonophysics》2004,379(1-4):109-126
The Horoman Peridotite Complex is an Alpine-type orogenic peridotite massif in the Hidaka metamorphic belt, Hokkaido, Northern Japan. Because of wide exposure and extremely limited serpentinization, the complex provides important information on uplift and emplacement processes of an Alpine-type peridotite massif into the crust. Based on microstructures, the massif can be divided into five structural units parallel to the lithological layering as follows; (1) Equigranular Zone, (2) Internal Shear Zone (ISZ), (3) Transition Zone, (4) Porphyroclastic Zone and (5) Basal Shear Zone (BSZ). A top-to-the-north sense of shear deformation in the Porphyroclastic Zone and the Basal Shear Zone implies that the Horoman Peridotite Complex had uplifted from the upper mantle to the lower crust along a northward dipping extensional shear-zone systems. After incorporation of the mantle peridotite with lower crustal rocks, the upper part of the massif (i.e. the Equigranular Zone and the Internal Shear Zone) was overprinted by a top-to-the-south sense of shear deformation that was comparable with the sub-horizontal displacement of the crustal granulite sequences in the Hidaka metamorphic belt under transpressive tectonic environment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号