首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
海洋学   4篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 546 毫秒
1
1.
Anoxia and hypoxia have been widely observed in estuarine and coastal regions over the past few decades; however, few reports have focused on the East China Sea (ECS). In June and August 2003, two cruises sampled at stations covering almost the entire shelf of the ECS to examine hypoxic events and their potential causes. In August, DO concentrations <2-3 mg l(-1) covered an area estimated at greater than 12,000 km(2) (or 432 km(3) volume). In contrast, water column DO concentrations exceeded 4 mg l(-1) throughout most of the shelf region. A sharp density gradient was observed under the mixed layer in August, restricting vertical re-aeration across this strong pycnocline. Oxygen depletion events, such as that described here for the ECS shelf, are fueled by decomposition of newly produced marine and river-borne biogenic substances (as well as older residual organic matter) deposited to the bottom waters.  相似文献   
2.
Streaks of elevated concentrations of surface chlorophyll a (Chl_a) of various spacing were found to be associated with internal waves in their transmission zone and dissipation zone in the summertime in the deep open northern South China Sea. At an anchored station in the dissipation zone north of the Dongsha Atoll with a water depth of ca. 600?m, undulations of the mixed layer depth with an amplitude of ca. 30?m and a periodicity of ca. 12?h were observed, and they were accompanied by similar undulation in the isotherm and isopleth of the nutrients. These observations are consistent with the enhancement of vertical mixing by internal waves and the resulting transfer of cold, nutrient-rich subsurface water to the surface mixed layer to fuel biological productivity. In the transmission zone and dissipation zone, respectively, the summertime (May–October) average sea surface temperature was 0.5 and 0.8?°C lower and Chl_a was 19 and 43?% higher than those in a nearby subregion that was minimally affected by internal waves. The mean net primary productivity was elevated by 15 and 37?%. These results indicate that the enhancement of biological activity by internal waves is not confined to the shallow waters on the shelf. The effect can be detected in all phases of the internal waves although it may be especially prominent in the dissipation zone where mixing between subsurface and surface waters is more effective.  相似文献   
3.
Accumulation rates of marine and terrigenous organic carbon in the continental margin sediments off southwestern Taiwan were estimated from the measured concentrations and isotopic compositions of total organic carbon (TOC) and previously reported sedimentation rates. Surficial sediments were collected from the study area spanning from the narrow shelf near the Kaoping River mouth to the deep slope with depths reaching almost 3000 m. The average sediment loading of Kaoping River is 17 Mt/yr, which yields high sediment accumulation rates ranging from 0.08 to 1.44 g cm−2 yr−1 in the continental margin. About half of the discharged sediments were deposited on the margin within 120 km of the river mouth. Carbon isotopic compositions of terrestrial and marine end-members of organic matter were determined, respectively, based on suspended particulate matter (SPM) collected from three major rivers in the southwestern Taiwan and from an offshore station. All samples were analyzed for the TOC content and its isotopic composition (δ13Corg). The SPM samples were also analyzed for the total nitrogen (TN) content. TOC content in marine sediments ranges from 0.45% to 1.35% with the highest values on the upper slope near the Kaoping River mouth. The TOC/TN ratio of the SPM samples from the offshore station is 6.8±0.6, almost identical to the Redfield ratio, indicating their predominantly marine origin; their δ13Corg values are also typically marine with a mean of −21.5±0.3‰. The riverine SPM samples exhibit typical terrestrial δ13Corg values around −25‰. The δ13Corg values of surficial sediments range from −24.8‰ to −21.2‰, showing a distribution pattern influenced by inputs from the Kaoping River. The relative contributions from marine and terrestrial sources to sedimentary organic carbon were determined by the isotope mixing model with end-member compositions derived from the riverine and marine SPM. High fluvial sediment inputs lead to efficient trapping of organic carbon over a wide range of water depth in this continental margin. The marine organic accumulation rate ranges from 1.6 to 70 g C m−2 yr−1 with an area weighted mean of 4.2 g C m−2 yr−1, which is on a par with the mean terrestrial contribution and accounts for 2.3% of mean primary production. The depth-dependent accumulation rate of marine organic carbon can be simulated with a function involving primary productivity and mineral accumulation rate, which may be applicable to other continental margins with high sedimentation rates. Away from the nearshore area, the content of terrigenous organic carbon in surficial sediments decreases with distance from the river mouth, indicating its degradation in marine environments.  相似文献   
4.
This study attempts to obtain optimum parametric levels for robust design of the microbubble drag reduction in a turbulent channel flow. This work was carried out experimentally by measuring the frictional resistance on the upper wall of the channel to analyze the efficiency of drag reduction. Considering the mean flow speed as an indicative factor, several controllable factors that influence the effect of microbubble drag reduction were investigated in this work by using the Taguchi method. The controllable factors in this study were the amount of air injected, area of air injection, and microbubble size. For the condition of optimum parametric levels, the effect of drag reduced could reach up to 21.6%.  相似文献   
5.
The multiple intersecting spheres (MIS) pressure hull is a logical derivative of the single unstiffened sphere, which is frequently used for deep operating, small submersibles because of its attractive low buoyancy factor. This paper investigates the optimum design of an MIS deep-submerged pressure hull subjected to hydrostatic pressure, using a powerful optimization procedure combined the extended interior penalty function method (EIPF) with the Davidon–Fletcher–Powell (DFP) method. In this study, the thickness of the shell, the width of the rib-ring, the inner radius of the rib-ring and the angle of intersection of the spherical shell are selected as design variables, and structural failure and human requirements are considered to minimize the buoyancy factor. Additionally, a sensitivity analysis is performed to study the influence of the design variables on the optimal structural strength design. The results reveal that the shell thickness is most important to lobar buckling strength, and that rib-ring width, rib-ring inner radius and spherical shell intersection angle are most important to rib-ring hoop strength. Optimization results may provide a valuable reference for designers.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号