首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   2篇
海洋学   2篇
  2002年   2篇
  1993年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
2.
We discuss the results of a numerical experiment devoted to the investigation of the variability of the three-dimensional fields of temperature and current velocity brought about by the seasonal variability of external factors: solar radiation, atmospheric fields, discharge of the river Jordan, and water intake for economic necessities. We use a multilayer model in isopycnic coordinates with an upper mixed layer. We set atmospheric factors in the form of monthly average fields that are uniform over space and linearly interpolated in time. We compare the computed fields of heat flux and evaporation through the lake surface, level, temperature, and currents with data of observations. We note a qualitative agreement of temperature fields during the whole year and current velocities in winter when the lake is, in fact, barotropic. In summer when the lake is stratified, currents in the model turn out to be weaker than in observations.  相似文献   
3.
Spatial structure of a jet flow at a river mouth   总被引:1,自引:0,他引:1  
The present work concentrates on the latest data measured in the Jordan river flow in lake Kinneret. Spectral characteristics of fluctuating velocity components have been obtained and processed. The three-dimensional structure of turbulence along the flow has been described. The main features of the jet flow turbulence in the river mouth are: a) The supply of turbulent energy changes due to different mechanisms along the flow. b) The structure of turbulence formed in the river decays rapidly along the flow, and c) In the sand area and beyond it, a significant generation of turbulent energy occurs. Quantitative estimations of the above effects were carried out.  相似文献   
4.
Within the framework of a one-dimensional model taking into account the presence of an upper mixed layer, we compute the seasonal variation of temperature and the concentration of dissolved oxygen in the central part of Lake Kinneret. The temperature conditions of the lake are determined by heat exchange with the atmosphere, and the oxygen conditions depend on gas exchange with the atmosphere and oxygen consumption in sediments as well as on internal sources and sinks. The latter are connected with oxygen supply in the course of photosynthesis and its consumption for the oxidation of labile organic substance in the water thickness. In the period of winter convection from December to February, when the upper mixed layer reaches the bottom, complete aeration of water takes place. The presence of thermal stratification of the lake in the remaining time results in oxygen deficiency under the thermocline.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号