首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   2篇
天文学   1篇
自然地理   1篇
  2023年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The Nordic geological surveys: Geology for society in practice   总被引:1,自引:0,他引:1  
Since the mid-nineteenth century., when the first of the Nordic Geological Surveys were established, they have generated a substantial amount of information on the Earth's crust, its natural resources, its processes, and on the geological history of Nordic areas. The collective mission of the geological surveys is to carry out "Geology for Society", by doing research and providing services, and by making geological information and data easily accessible to all the varied end users in industry, government agencies, government institutes, public administrations, technical offices, academia and research institutes, as well as for private individuals. The present paper gives a brief overview of a few, selected, research areas and projects currently undertaken by the Nordic geological surveys. These serve as practical examples of how the Nordic geological surveys address important societal problems and challenges that require geological input for their solution.  相似文献   
2.
Based on a revised chronostratigraphy, and compilation of borehole data from the Barents Sea continental margin, a coherent glaciation model is proposed for the Barents Sea ice sheet over the past 3.5 million years (Ma). Three phases of ice growth are suggested: (1) The initial build-up phase, covering mountainous regions and reaching the coastline/shelf edge in the northern Barents Sea during short-term glacial intensification, is concomitant with the onset of the Northern Hemisphere Glaciation (3.6–2.4 Ma). (2) A transitional growth phase (2.4–1.0 Ma), during which the ice sheet expanded towards the southern Barents Sea and reached the northwestern Kara Sea. This is inferred from step-wise decrease of Siberian river-supplied smectite-rich sediments, likely caused by ice sheet blockade and possibly reduced sea ice formation in the Kara Sea as well as glacigenic wedge growth along the northwestern Barents Sea margin hampering entrainment and transport of sea ice sediments to the Arctic–Atlantic gateway. (3) Finally, large-scale glaciation in the Barents Sea occurred after 1 Ma with repeated advances to the shelf edge. The timing is inferred from ice grounding on the Yermak Plateau at about 0.95 Ma, and higher frequencies of gravity-driven mass movements along the western Barents Sea margin associated with expansive glacial growth.  相似文献   
3.
The Mjølnir impact crater in the Norwegian Barents Sea features among the 20 largest impact craters listed in the Earth Impact Database. The impact is dated to 142 ± 2.6 Ma, corresponding closely to the Jurassic/Cretaceous boundary in the Boreal stratigraphy. Multidisciplinary studies carried out over the last three decades have suggested that the up to 40 km wide crater was created by a 1–3 km diameter impactor colliding with a shallow epicontinental sea, causing regional havoc and a regional ecological crisis that followed in its wake. Only minor evidence for the consequences of the impact for the surrounding depositional basins has been documented so far. This study describes a large submarine slump penetrated by hydrocarbon exploration well 7121/9-1, located in the southern Hammerfest Basin and approximately 350 km away from the impact site. The slump is dated by a black shale drape, which contains characteristic impact-related biotic assemblages and potential ejecta material. This precise dating enables us to associate the slump with large-scale fault movements and footwall collapse along the basin-bounding Troms-Finnmark Fault Complex, which we conclude were caused by shock waves from the Mjølnir impact and the passage of associated tsunami trains. The draping black shale is interpreted to represent significant reworking of material from the contemporary seabed by tsunamis and currents set up by the impact.  相似文献   
4.
Towards a 4D topographic view of the Norwegian sea margin   总被引:1,自引:1,他引:0  
The present-day topography/bathymetry of the Norwegian mainland and passive margin is a product of complex interactions between large-scale tectonomagmatic and climatic processes that can be traced back in time to the Late Silurian Caledonian Orogeny. The isostatic balance of the crust and lithosphere was clearly influenced by orogenic thickening during the Caledonian Orogeny, but was soon affected by post-orogenic collapse including overprinting of the mountain root, and was subsequently affected by a number of discrete extensional events eventually leading to continental break-up in Early Eocene time. In the mid-Jurassic the land areas experienced deep erosion in the warm and humid climate, forming a regional paleic surface. Rift episodes in the Late Jurassic and Early Cretaceous, with differential uplift along major fault zones, led to more pronounced topographic contrasts during the Cretaceous, and thick sequences of clastic sediments accumulated in the subsiding basins on the shelf. Following renewed extension in the Late Cretaceous, a new paleic surface developed in the Paleocene. Following break-up the margin has largely subsided thermally, but several Cenozoic shortening events have generated positive contraction structures. On the western side of the on-shore drainage divide, deeper erosion took place along pre-existing weakness zones, creating the template of the present day valleys and fjords. In the Neogene the mainland and large portions of the Barents Sea were uplifted. It appears that this uplift permitted ice caps to nucleate and accumulate during the Late Pliocene northern hemisphere climatic deterioration. The Late Pliocene to Pleistocene glacial erosion caused huge sediment aprons to be shed on to the Norwegian Sea and Barents Sea margins. Upon removal of the ice load the landmass adjusted isostatically, and this still continues today.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号