首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
地质学   1篇
海洋学   13篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
2.
Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the robustness of the patterns against these missing data. No long-term trends in DON concentrations were found over the sampling period (1995–2005). Inter-annual variability in the different time series showed both common and station-specific behavior. The stations could be divided into two regions, based on absolute concentrations and the dominant times scales of variability. Average DON concentrations were 11 μmol l−1 in the coastal region and 5 μmol l−1 in the open sea. Organic fractions of total dissolved nitrogen (TDN) averaged 38 and 71% in the coastal zone and open sea, respectively, but increased over time due to decreasing dissolved inorganic nitrogen (DIN) concentrations. In both regions intra-annual variability dominated over inter-annual variability, but DON variation in the open sea was markedly shifted towards shorter time scales relative to coastal stations. In the coastal zone a consistent seasonal DON cycle existed with high values in spring–summer and low values in autumn–winter. In the open sea seasonality was weak. A marked shift in the seasonality was found at the Dogger Bank, with DON accumulation towards summer and low values in winter prior to 1999, and accumulation in spring and decline throughout summer after 1999. This study clearly shows that DON is a dynamic actor in the North Sea and should be monitored systematically to enable us to understand fully the functioning of this ecosystem.  相似文献   
3.
The role of the Setúbal–Lisbon canyon in accumulation and transport of labile organic matter from the coastal sea and ocean surface water towards the deep sea was assessed by investigating the distribution of organic matter of different quality in sedimentary aggregates and surface sediments of the canyon and adjacent slopes. Total hydrolysable amino acids (THAA) and organic carbon (Corg) were measured from aggregates, and contents of Corg, chlorophyll a (chl a), phaeopigments (phaeo), chloroplastic pigment equivalents (CPE) from sediments. As indices of organic matter (OM) quality THAA:Corg, degradation index (DI), chl a:phaeo, chl a:Corg and C:N ratio were determined. Sediment profiles of chl a and the isotope 210 of lead (210Pb) were used as tracers in a transport model to estimate deposition rates and background levels of the tracers, and sediment mixing rates (Db). Whereas bulk Corg contents of canyon and slope sediments were practically similar at all depths, higher contents of THAA, chl a and CPE, as well as higher THAA:Corg, DI and chl a:Corg, in aggregates and sediments from the upper reaches of the canyon indicate that labile organic matter accumulates in the upper canyon. This is confirmed by higher chl a and 210Pb deposition and Db calculated from the model. Hence, the Setúbal–Lisbon canyon, specially the upper region, acts as a natural trap of organic matter that is transported to the region via lateral transport and vertical settling from primary productivity. Organic matter might be further transported in downward canyon direction via rebound processes. The chl a and 210Pb profiles reveal active sediment mixing by physical processes and/or animal reworking.  相似文献   
4.
The benthic food web of the deep Faroe–Shetland Channel (FSC) was modelled by using the linear inverse modelling methodology. The reconstruction of carbon pathways by inverse analysis was based on benthic oxygen uptake rates, biomass data and transfer of labile carbon through the food web as revealed by a pulse-chase experiment. Carbon deposition was estimated at 2.2 mmol C m−2 d−1. Approximately 69% of the deposited carbon was respired by the benthic community with bacteria being responsible for 70% of the total respiration. The major fraction of the labile detritus flux was recycled within the microbial loop leaving merely 2% of the deposited labile phytodetritus available for metazoan consumption. Bacteria assimilated carbon at high efficiency (0.55) but only 24% of bacterial production was grazed by metazoans; the remaining returned to the dissolved organic matter pool due to viral lysis. Refractory detritus was the basal food resource for nematodes covering ∼99% of their carbon requirements. On the contrary, macrofauna seemed to obtain the major part of their metabolic needs from bacteria (49% of macrofaunal consumption). Labile detritus transfer was well-constrained, based on the data from the pulse-chase experiment, but appeared to be of limited importance to the diet of the examined benthic organisms (<1% and 5% of carbon requirements of nematodes and macrofauna respectively). Predation on nematodes was generally low with the exception of sub-surface deposit-feeding polychaetes that obtained 35% of their energy requirements from nematode ingestion. Carnivorous polychaetes also covered 35% of their carbon demand through predation although the preferred prey, in this case, was other macrofaunal animals rather than nematodes. Bacteria and detritus contributed 53% and 12% to the total carbon ingestion of carnivorous polychaetes suggesting a high degree of omnivory among higher consumers in the FSC benthic food web. Overall, this study provided a unique insight into the functioning of a deep-sea benthic community and demonstrated how conventional data can be exploited further when combined with state-of-the-art modelling approaches.  相似文献   
5.
Karline  Soetaert  Carlo  Heip Magda  Vincx 《Marine Ecology》1991,12(3):227-242
Abstract. Meiobenthos densities (excluding hard-shcllcd foraminifcrans) were compared along a Mediterranean deep-sea transect off Calvi (Corsica) and in an adjacent canyon. Chloroplastic Pigment Equivalent values (CPE) provided an estimate of the amount of primary production reaching the bottom.
The stations along the transect were characterized by a low CPE content of the sediment, decreasing with increasing station depth. CPE values in the canyon were much higher, which probably resulted from import of material from the adjacent bay of Calvi. Similarly, meiobenthos densities along the transect were much lower than at comparable depths along the canyon.
Meiobenthos density was significantly and positively correlated with CPE values.
Nematodes were the most abundant taxon at all stations, followed by copepods + nauplii and the soft-shelled foraminiferans. The meiobenthos was most abundant in the upper half centimeter. Nematode and foraminiferan densities tended to decline less rapidly with increasing depth into the sediment. Specimens belonging to the recently described phylum Loricifera, larvae of the parasitic crustacean class Tantulocarida, and fragments of an infaunal Xenophyophoria (large protozoans) are reported for the first time from the Mediterranean.  相似文献   
6.
Biomass and respiration rates of bacteria, nematodes and macrobenthos were estimated in relation to the deposition of the spring phytoplankton bloom at two contrasting sites in the Southern North Sea: one with fine‐grained sediment close to the coastline and another with highly permeable sediments. Sediment community oxygen consumption (SCOC) was also measured. Bacterial biomass was relatively similar at both stations, whereas nematode and macrobenthic biomass were higher in fine‐grained sediment. In fine sediments, bacterial biomass increased quickly after deposition of the phytoplankton bloom, whereas the response of nematodes and macrobenthos was delayed. In coarser sediments, nematodes and macrobenthos also showed a fast response in terms of density and biomass. Respiration in permeable sediments was mainly dominated by bacteria at all periods of the year. Hence, nematode and macrobenthic respiration did not contribute strongly to SCOC. This is in contrast to the patterns observed in finer sediments, where both macrofauna and nematodes were important oxygen consumers as well. Macrobenthos contributed more to total SCOC than did nematodes in winter. However, shortly after the arrival of phytodetritus at the sea floor, nematodes and macrobenthos contributed equally to the total SCOC, indicating that all benthic size classes should be taken into account when investigating marine benthic respiration rates.  相似文献   
7.
Interlinked mangrove–seagrass ecosystems are characteristic features of many tropical coastal areas, where they act as feeding and nursery grounds for a variety of fishes and invertebrates. The autotrophic carbon sources supporting fisheries in Gazi bay (Kenya) were studied in three sites, two located in the tidal creeks flowing through extensive mangrove forests, another site located in the subtidal seagrass meadows, approximately 2.5 km away from the forest. Carbon and nitrogen stable isotope composition of 42 fish species, 2 crustacean species and a range of potential primary food sources (e.g., mangroves, seagrasses and epiphytes, macroalgae) were analysed. There was considerable overlap in the δ13C signatures between fish (−16.1 ± 2.1‰), seagrasses (−15.1 ± 3.0‰), seagrass epiphytes (−13.6 ± 3.3‰), and macroalgae (−20.4 ± 3.1‰). Nevertheless, the signatures for most primary producers were sufficiently distinct to indicate that the dominant carbon sources for fish were mainly derived from the seagrass and their associated epiphytic community, and possibly macroalgae. Mangrove-derived organic matter contributes only marginally to the overall fish food web. Carbon supporting these fish communities was derived directly through grazing by herbivorous and some omnivorous fishes, or indirectly through the benthic food web. Fishes from the mangrove creeks had distinctly lower δ13C signatures (−16.8 ± 2.0‰) compared to those collected in the adjacent seagrass beds (−14.7 ± 1.7‰). This indicated that these habitats were used as distinct sheltering and feeding zones for the fishes collected, with minimal degree of exchange within the fish communities despite their regular movement pattern.  相似文献   
8.
AquaEnv is an integrated software package for aquatic chemical model generation focused on ocean acidification and antropogenic CO2 uptake. However, the package is not restricted to the carbon cycle or the oceans: it calculates, converts, and visualizes information necessary to describe pH, related CO2 air–water exchange, as well as aquatic acid–base chemistry in general for marine, estuarine or freshwater systems. Due to the fact that it includes the relevant acid–base systems, it can also be applied to pore water systems and anoxic waters. AquaEnv is implemented in the open source programming language R , which allows for a flexible and versatile application: AquaEnv ’s functionality can be used stand-alone as well as seamlessly integrated into reactive-transport models in the R modelling environment. Additionally, AquaEnv provides a routine to simulate and investigate titrations of water samples with a strong acid or base, as well as a routine that allows for a determination of total alkalinity and total carbonate values from recorded titration curves using non-linear curve-fitting.  相似文献   
9.
The HAUSGARTEN observatory is located in the eastern Fram Strait (Arctic Ocean) and used as long-term monitoring site to follow changes in the Arctic benthic ecosystem. Linear inverse modelling was applied to decipher carbon flows among the compartments of the benthic food web at the central HAUSGARTEN station (2500 m) based on an empirical data set consisting of data on biomass, prokaryote production, total carbon deposition and community respiration. The model resolved 99 carbon flows among 4 abiotic and 10 biotic compartments, ranging from prokaryotes up to megafauna. Total carbon input was 3.78±0.31 mmol C m−2 d−1, which is a comparatively small fraction of total primary production in the area. The community respiration of 3.26±0.20 mmol C m−2 d−1 is dominated by prokaryotes (93%) and has lower contributions from surface-deposit feeding macro- (1.7%) and suspension feeding megafauna (1.9%), whereas contributions from nematode and other macro- and megabenthic compartments were limited to <1%. The high prokaryotic contribution to carbon processing suggests that functioning of the benthic food web at the central HAUSGARTEN station is comparable to abyssal plain sediments that are characterised by strong energy limitation. Faunal diet compositions suggest that labile detritus is important for deposit-feeding nematodes (24% of their diet) and surface-deposit feeding macrofauna (∼44%), but that semi-labile detritus is more important in the diets of deposit-feeding macro- and megafauna. Dependency indices on these food sources were also calculated as these integrate direct (i.e. direct grazing and predator–prey interactions) and indirect (i.e. longer loops in the food web) pathways in the food web. Projected sea-ice retreats for the Arctic Ocean typically anticipate a decrease in the labile detritus flux to the already food-limited benthic food web. The dependency indices indicate that faunal compartments depend similarly on labile and semi-labile detritus, which suggests that the benthic biota may be more sensitive to changes in labile detritus inputs than when assessed from diet composition alone. Species-specific responses to different types of labile detritus inputs, e.g. pelagic algae versus sympagic algae, however, are presently unknown and are needed to assess the vulnerability of individual components of the benthic food web.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号