首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   1篇
海洋学   15篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2000年   2篇
排序方式: 共有16条查询结果,搜索用时 265 毫秒
1.
Walleye pollock (Theragra chalcogramma) is an ecologically and economically important groundfish in the eastern Bering Sea. Its population size fluctuates widely, driving and being driven by changes in other components of the ecosystem. It is becoming apparent that dramatic shifts in climate occur on a decadal scale, and these “regime shifts” strongly affect the biota. This paper examines quantitative collections of planktonic eggs and larvae of pollock from the southeastern Bering Sea during 1976–1979. Mortality, advection, and growth rates were estimated, and compared among the years encompassing the 1970s’ regime shift. These data indicate that pollock spawning starts in late February over the basin north of Bogoslof Island. Over the shelf, most spawning occurs north of Unimak Island near the 100 m isobath in early or mid April. Pollock eggs are advected to the northwest from the main spawning area at 5–10 cm/sec. Larvae are found over the basin north of Bogoslof Island in April, and over the shelf between Unimak Island and the Priblof Islands in May. Compared to 1977, the spawning period appeared to be later in 1976 (a cold year) and earlier in 1978 (a warm year) in the study area. At the lower temperatures in 1976, egg duration would be longer and thus egg mortality would operate over a longer period than in the other years. Mean larval growth appeared to be lower in 1976 than in 1977 and 1979. Estimated egg mortality rate in 1977 was 0.6 in April and 0.3 in early May.  相似文献   
2.
Genetic stock identification studies have been widely applied to Pacific salmon species to estimate stock composition of complex mixed-stock fisheries. In a September-October 2004 survey, 739 chum salmon (Oncorhynchus keta) specimens were collected from 23 stations in the western Bering Sea. We determined the genetic stock composition of immature chum salmon based on the previous mitochondria DNA baseline. Each regional estimate was computed based on the conditional maximum likelihood method using 1,000 bootstrap resampling and then pooled to the major regional groups: Korea - Japan - Primorie (KJP) / Russia (RU) / Northwest Alaska (NWA) / Alaska Peninsula - Southcentral Alaska - Southeast Alaska - British Columbia - Washington (ONA). The stock composition of immature chum salmon in the western Bering Sea was a mix of 0.424 KJP, 0.421 RU, 0.116 NWA, and 0.039 ONA stocks. During the study period, the contribution of Asian chum salmon stocks gradually changed from RU to KJP stock. In addition, North American populations from NWA and ONA were small but present near the vicinity of the Russian coast and the Commander Islands, suggesting that the study areas in the western Bering Sea were an important migration route for Pacific chum salmon originating both from Asia and North America during the months of September and October. These results make it possible to better understand the chum salmon stock composition of the mixed-stock fisheries in the western Bering Sea and the stock-specific distribution pattern of chum salmon on the high-seas.  相似文献   
3.
By reviewing the history of fishery exploitation in the coastal waters of west Canada and east Korea, related with contrasting life history strategies of the dominant species, the fishery management challenges that each country would face in the upcoming decades were outlined. In the ecosystem of the Canadian western coastal waters, the dominant oceanographic feature is the coastal upwelling domain off the west coast of Vancouver Island, the northernmost extent of the California Current System in the eastern North Pacific. In the marine ecosystem of the eastern coasts of Korea (the Japan/East Sea), a major oceanographic feature is the Tsushima Warm Current, a branch of the Kuroshio Current in the western North Pacific. Fishes in the Canadian ecosystem are dominated by demersal, long-lived species such as flatfish, rockfish, sablefish, and halibut. During summer, migratory pelagic species such as Pacific hake, Pacific salmon, and recently Pacific sardine, move into this area to feed. In the late 1970s, Canada declared jurisdiction for 200 miles from their coastline, and major fisheries species in Canadian waters have been managed with a quota system. The overall fishing intensity off the west coast of Vancouver Island has been relatively moderate compared to Korean waters. Fishes in the ecosystem of the eastern Korean waters are dominated by short-lived pelagic and demersal fish. Historically, Korea has shared marine resources in this area with neighbouring countries, but stock assessments and quotas have only recently (since the late-1990s) been implemented for some major species. In the Korean ecosystem, fisheries can be described as intensive, and many stocks have been rated as overfished. The two ecosystems responded differently to climate impacts such as regime shifts under different exploitation histories. In the future, both countries will face the challenge of global warming and subsequent impacts on ecosystems, necessitating developing adaptive fisheries management plans. The challenges will be contrasting for the two countries: Canada will need to conserve fish populations, while Korea will need to focus on rebuilding depleted fish populations.  相似文献   
4.
Evidence supports the hypothesis that two climatic regime shifts in the North Pacific and the Japan/East Sea, have affected the dynamics of the marine ecosystem and fisheries resources from 1960 to 2000. Changes in both mixed layer depth (MLD) and primary production were detected in the Japan/East Sea after 1976. The 1976 regime shift appears to have caused the biomass replacement with changes in catch production of major exploited fisheries resources, including Pacific saury, Pacific sardine and filefish. Both fisheries yield and fish distribution are reflected in these decadal fluctuations. In the 1960s and 1990s, common squid dominated the catches whereas in the 1970s and 1980s, it was replaced by walleye pollock. In the post-1988 regime shift, the distribution of horse mackerel shifted westward and southward and its distributional overlap with common mackerel decreased. The habitat of Pacific sardine also shifted away from mackerel habitats during this period. To evaluate changes in the organization and structure of the ecosystem in the Japan/East Sea, a mass-balanced model, Ecopath, was employed. Based on two mass-balanced models, representing before (1970–75) and after (1978–84) the 1976 regime shift, the weighted mean trophic level of catch increased from 3.09 before to 3.28 after. Total biomass of species groups in the Japan/East Sea ecosystem increased by 15% and total catch production increased by 48% due to the 1976 regime shift. The largest changes occurred at mid-trophic levels, occupied by fishes and cephalopods. The dominant predatory species shifted from cephalopods to walleye pollock due to the 1976 regime shift. It is concluded that the climatic regime shifts caused changes in the structure of the ecosystem and the roles of major species, as well as, large variations in biomass and production of fisheries resources.  相似文献   
5.
6.
Chum salmon, Oncorhynchus keta, are distributed widely in the North Pacific Ocean, and about 76% of chum salmon were caught from Russian, Japanese, and Korean waters of the northwestern Pacific Ocean during the last 20 years. Although it has been speculated that the recent increase in salmon production was aided by not only the enhancement program that targeted chum salmon but also by favorable ocean conditions since the early 1990s, the ecological processes for determining the yield of salmon have not been clearly delineated. To investigate the relationship between yield and the controlling factors for ocean survival of chum salmon, a time-series of climate indices, seawater temperature, and prey availability in the northwestern Pacific including Korean waters were analyzed using some statistical tools. The results of cross-correlation function (CCF) analysis and cumulative sum (CuSum) of anomalies indicated that there were significant environmental changes in the North Pacific during the last century, and each regional stock of chum salmon responded to the Pacific Decadal Oscillation (PDO) differently: for Russian stock, the correlations between PDO index and catch were significantly negative with a time-lag of 0 and 1 years; for Japanese stock, significantly positive with a timelag of 0–2 years; and for Korean stock, positive but no significant correlation. The results of statistical analyses with Korean chum salmon also revealed that a coastal seawater temperature over 14°C and the return rate of spawning adults to the natal river produced a significant negative correlation.  相似文献   
7.
8.
Understanding in climate effects on marine ecosystem is essential to utilize, predict, and conserve marine living resources in the 21s t century. In this review paper, we summariz ed t h e past history and current status of Korean fisheries as well as the changes in climate and oceanographic phenomena since the 1960s. Ocean ecosystems in Korean waters can be divided into three, based on the marine commercial fish catches; the demersal ecosystem in the Yellow Sea and the East China Sea, the pelagic ecosystem in the Tsushima Warm Current from the East China Sea to the East/Japan Sea, and the demersal ecosystem in the northern part of the East/Japan Sea. Through the interdisciplinary retrospective analysis using available fisheries, oceanographic, and meteorological information in three important fish communities, the trend patterns in major commercial catches and the relationship between climate/ environmental variability and responses of fish populations were identified. Much evidence revealed that marine ecosystems, including the fish community in Korean waters, has been seriously affected by oceanographic changes, and each species has responded differently. In general, species diversity is lessening, and mean trophic level of each ecosystem has decreased during the last 3~4 decades. Future changes in fisheries due to global warming are also considered for major fisheries and aquaculture in Korean waters.  相似文献   
9.
Chum salmon (Oncorhynchus keta) in the North Pacific Ocean are anadromous fish, and spend most of their life in the sea until spawning in natal streams. To identify the stock and habitat characteristics of chum salmon, the composition of chemical elements (Ca, Mn, Sr, Zn, and Ba) in otolith was examined using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Two main types of analytical work have been carried out; discrete spot analysis and line scan analysis of otolith sections. Salmon otoliths were obtained from the eastern (Canada and USA) and western (Japan and Korea) North Pacific during 1997–1999 spawning seasons. Spot analysis of otolith cores demonstrated significant differences in the element concentration among countries (p = 0.003). Line scanning from the core to the margin showed that Sr concentrations were elevated at the core of the otoliths, decreased during the freshwater stage, increased suddenly at a certain point, and oscillated periodically towards the margin matching with year-ring. The elevated Sr concentration at the core may reflect the maternal contribution to the egg, and the oscillations toward the margin may reflect salinity gradients between onshore/offshore or north/south migrations. The Zn profiles also oscillated and corresponded to the annual ring of the otolith. However, the profiles of Sr and Zn oscillated oppositely after salmon migrated to saline water and the Zn uptake declined toward the rim of the otolith while Sr uptake increased.  相似文献   
10.
Kim  Kyung-Su  Shim  Jeong Hee  Kim  Suam 《Ocean Science Journal》2015,50(2):381-388

It widely thought that ocean acidification processes that caused by atmospheric CO2 increase and accordingly lower seawater pH conditions might cause serious harm to marine food webs in certain ecosystems in the near future. Little is known about how marine fishes respond to reduced pH conditions. We investigated the effects of CO2 conditions on the growth of olive flounder (Paralichthys olivaceus) larvae. Newly hatched larvae were reared at three different levels of pCO2 (574, 988 and 1297 µatm) in temperature-controlled (21 ± 0.5°C) water tanks for four weeks until metamorphosis. The experiment was repeated three times in May, June, and July 2011, and body lengths and weights were measured at the completion of each experiment. The results indicated that the body length and weight of flounder larvae significantly increased with increasing CO2 concentrations (P < 0.05). A higher daily growth rate during the early larval stage (hatching to 14 days) was found among the larvae reared in low pCO2 conditions, while a significantly lower growth rate was found among larvae in higher pCO2 water conditions. On the other hand, in the late larval stage (18 days after hatching to metamorphosis), the daily growth rate of larvae was much higher in high CO2 water. Bone density of larvae, however, decreased with increasing CO2 concentration in the water

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号