首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
大气科学   1篇
地球物理   3篇
地质学   5篇
海洋学   24篇
自然地理   3篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2014年   6篇
  2013年   1篇
  2010年   1篇
  2009年   4篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1988年   1篇
排序方式: 共有36条查询结果,搜索用时 31 毫秒
1.
The northward intruding eddy along the East coast of Korea   总被引:5,自引:0,他引:5  
The current structures and their seasonal variations in the East Korean Warm Current (EKWC) region, which plays a significant role in the northward transport of warm and saline waters, were described by combining the sea surface temperature (SST) data of consecutive satellite inferred (IR) images and hydrographic data. The SST patterns in winter-spring clearly showed that the small meander of thermal front originating from the Tsushima/Korea Strait formed close to the Korean coast and grew an isolated warm eddy with horizontal dimension of order 100 km. Such warm eddy began to intrude slowly northward from spring to summer. At that time, interactions with neighboring synoptic warm eddy [Ks] around the Ulleung Basin were found to have strongly influence the movement of the intruding eddy and its structural change. In autumn, after the northward movement stopped at the north of eddy [Ks], the relative stable northward current along the Korean coast were formed. The evidence from observational results does not support a persistent branching of the EKWC from the Tsushima/Korea Strait, but a seasonal episodic supply of warm and saline waters due to the northward intruding eddy process described above.  相似文献   
2.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
3.
The higher mode predominance in the current velocity fields associated with wind-induced shelf waves in the nondispersive regime is studied with a special attention to the effect of the geographical boundary, e.g. wide strait or wide bank areas. The effect of such large topographic change is represented by wind forcing with a finite dimension near the geographical boundary. The time development processes of the wind-induced shelf waves is examined in the context of an initial-value problem, where a spatially finite wind stress is applied att=0. Various modes of shelf waves excited at the boundary start propagating simultaneously and develop monotonically within the forcing region. After the passage of such wave, the energy of wind is used to maintain the attained equilibrium condition, i.e. the steady shelf circulation. The current evolution of the lower mode is restricted to the earlier stage because of the large propagation speed. In contrast, the higher mode waves can travel slowly within the forcing region so that the kinetic energy is supplied from wind stress for a long time before the equilibrium condition is established. Consequently, the observation at the fixed point near the geographical boundary would show that the higher mode waves gradually dominate as time goes on, i.e. for the long-term forcing.  相似文献   
4.
One possible approach to estimating the time interval between large-scale Tōnankai (Tōkai) and Nankai earthquakes on the Japan arc is sequential assimilation of crustal deformation data. We conducted numerical modeling of sequential assimilation using surface deformation calculated from earthquake generation cycle simulations along the Nankai Trough. To account for observation noise, we used measured ocean bottom pressure gauge data, excluding tidal modulation, from a station on the ocean bottom cable network Dense Oceanfloor Network System for Earthquakes and Tsunamis in the Kumano basin. We used sequential importance sampling as our data assimilation method. We found that as the amount of data increased, the estimated time interval between the Tōnankai and Nankai earthquakes approached the “true” observed interval. In addition, the noise in the pressure gauge data was sufficiently small that simulated crustal deformation patterns could be distinguished for different time intervals.  相似文献   
5.
Using long-term sea surface temperature (SST) and acoustic Doppler current profiler (ADCP) data, we examined variations in the current axis of the Tsushima Warm Current (TWC) off the San’in coast of Japan, near the entrance to the Japan Sea. There were large horizontal temperature gradients along the shelf edge in the southwestern Japan Sea from October to May, suggesting that the second branch of the TWC appears not only in spring and autumn but also in winter. From the ADCP data analysis, we found that currents with speeds of approximately 20 cm s?1 and greater appeared around the shelf edge off San’in coast in all seasons. The SST and ADCP data analyses suggested that the second branch of the TWC exists around the shelf edge off the San’in coast throughout the year. This finding differed from those of previous studies. A relatively strong current (speed greater than 15 cm s?1) appeared on the shore side in all seasons, except at line W in winter. This current might be the first branch of the TWC. The first branch seemed to occur around in 100 m isobaths, but shifted northward and southward because the bottom topography around lines W and M was relatively flat and the shelf was broad. The first branch was very obscure, and it was difficult to define the two branches of the TWC off the San’in coast from the seasonally averaged vectors. However, snapshots of current distribution derived from the ADCP data clearly showed these branches. Hence, both the first and second branches might occur throughout the year off the San’in coast.  相似文献   
6.
Abstract

The Wadi Al Ayn plain is a coastal system on the eastern coast of Cap Bon in northeastern Tunisia. The area is known for its intensive agriculture, which is based mainly on groundwater exploitation. The aim of this study is to identify the sources of groundwater salinization in the Wadi Al Ayn aquifer system and deduce the processes that drive the mineralization. Surface water and groundwater samples were taken and analysed for major ions and stable isotopes. The geochemical data were used to characterize and classify the water samples based on a variety of ion plots and diagrams. Stable isotopes are useful tools to help us understand recharge processes and to differentiate between salinity origins. The oilfield brines infiltrated from the sandy bed of Wadi Al Ayn comprise the main source of groundwater salinization in the central part of the plain, while seawater intrusion is mainly responsible for the increased salinity in the groundwater of the coastal part of the plain (at Daroufa).

Citation Chekirbane, A., Tsujimura, M., Kawachi, A., Isoda, H., Tarhouni, J., and Benalaya, A., 2013. Hydrogeochemistry and groundwater salinization in an ephemeral coastal flood plain: Cap Bon, Tunisia. Hydrological Sciences Journal, 58 (5), 1097–1110.  相似文献   
7.
Warm eddy movements in the eastern Japan Sea   总被引:1,自引:0,他引:1  
Warm eddy movements and their areal extent in the eastern Japan Sea were described by presenting space-time diagrams for the warm eddy locations and magnitudes. The analyzed data were compiled from Japan Maritime Safety Agency thermal maps at 200 m depth from 1985 to 1992. Two to four warm eddies always existed in the eastern Japan Sea and exhibited both internnual and annual signals. We found that warm eddies were generated in spring around Oki Spur at least three times during the analyzed period of eight years, moved eastward, and interacted with neighboring warm eddies, which were involved in coalescences or separations. The warm eddy distributions off Noto Peninsula have clear seasonal preference. Warm eddies moved eastward from Noto Peninsula in winter-spring to North Japan in the next winter, with mean translation speeds of 0.5–2 cm s–1. Warm eddies reaching North Japan typically decayed during a few month after splitting into two or three mesoscale warm eddies.  相似文献   
8.
Hydrographic observations have revealed detailed structure of the Bottom Water in the Japan Sea. The Yamato Basin Bottom Water (YBBW) exhibits higher temperatures and lower dissolved oxygen concentrations than those found in the Japan Basin Bottom Water (JBBW). Both Bottom Waters meet around the boundary region between the Yamato and the Japan Basins, forming a clear benthic front. The structure of the benthic front suggests an estuary-like water exchange between both Basins, with the inflow from the Japan Basin passing under the outflow from the Yamato Basin. It is inferred from the property distributions that the JBBW flowing into the Yamato Basin is entrained by the cyclonic circulation in the basin, and modified to become the YBBW. Vertical diffusion and thermal balance in the YBBW are examined using a box model. The results show that the effect of geothermal heating has about 70% of the magnitude of the vertical thermal diffusion and both terms cancel the advection term of the cold JBBW from the Japan Basin. The box model also estimates the turnover time and vertical diffusivity for the YBBW as 9.1 years and 3.4 × 10−3 m2s− 1, respectively.  相似文献   
9.
To assess the potential of stable isotope ratios as an indicator of fish migration within estuaries, stable isotope ratios in important zooplankton species were analyzed in relation to estuarine salinity gradients. Gut contents from migratory juveniles of the euryhaline marine fish Lateolabrax japonicus were examined along the Chikugo River estuary of the Ariake Sea, which has the most developed estuarine turbidity maximum (ETM) in Japan. Early juveniles in March and April preyed primarily on two copepod species; Sinocalanus sinensis at lower salinities and Acartia omorii at higher salinities. Late juveniles (standard length > 40 mm) at lower salinities preyed exclusively on the mysid Acanthomysis longirostris until July and complementarily on the decapod Acetes japonicus in August. These prey species were collected along the estuary during the spring–summer seasons of 2003 and 2004, and their carbon and nitrogen stable isotope ratios (δ13C and δ15N) were evaluated. The δ13C values of prey species were distinct from each other and were primarily depleted within and in close proximity to the ETM (salinity < 10); S. sinensis (−26.6‰) < Acanthomysis longirostris (−23.3‰) < Acartia omorii (−21.1‰) < Acetes japonicus (−18.5‰). The overall gradient of δ13C with salinity occurred for all prey species and showed minor temporal fluctuations, while it was not directly influenced by the δ13C values in particulate organic matter along the estuary. In contrast to δ13C, the δ15N values of prey species did not exhibit any clear relationship with salinity. The present study demonstrated that δ13C has the potential for application as a tracer of fish migration into lower salinity areas including the ETM.  相似文献   
10.
In order to clarify how differences in weather conditions affect the surface heat balance of a large maritime glacier, meteorological observations were carried out in the ablation area of Glaciar Exploradores in the Chilean Patagonia during the austral summer of 2006/2007. Under cloudy/rainy weather, when the air temperature and wind speed were high due to advection, the average melting heat was 18.8 MJ m?2 day?1 and the turbulent heat fluxes contributed 35% of the total melt. During clear weather, the average melting heat was 16.9 MJ m?2 day?1 and 13% of the total was the turbulent heat fluxes. A decrease in air temperature due to the development of the glacier boundary layer on clear days will lead to an overestimation of the melt using the air temperature at a weather station outside of the glacier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号