首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
地球物理   9篇
地质学   10篇
海洋学   2篇
  2017年   1篇
  2013年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1995年   3篇
  1993年   2篇
  1991年   3篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Summary Shiribeshi Seamount is located to the east of the Okushiri Ridge, in the northeast Japan Sea. Whole rock K-Ar age of olivine-augite andesite dredged from the Seamount was determined to be 0.9 ± 0.2 Ma (Tsuchiya et al., 1989), indicating that Shiribeshi Seamount is a Quaternary volcano in the back-arc region off the junction of the Northeast Japan and Kurile arcs. Shiribeshi volcano is composed of basalt to rhyolite, which show a typical island arc calc-alkaline nature on the basis of petrographical characteristics of 95 samples dredged from four sites. Abundances of incompatible elements including K, Rb, Sr, Nb, P, Ti, Y and Zr in 16 representative rocks are discussed, together with those in the Quaternary volcanic rocks from the NE Japan and Kurile arcs in terms of compositional variation across the arcs. The estimated composition of the primary magma of Shiribeshi volcano is characterized by higher incompatible element contents and a higher Zr/Y ratio than primary magmas in the volcanic front side. Based on HFS element concentrations the degree of partial melting for three primary magmas of Oshima-Oshima, Shiribeshi and Rishiri volcanoes in the northeast Japan Sea may decrease gradually with increasing distance from the volcanic front. However, LIL element contents, especially K and Rb are lower in the primary magma of Rishiri volcano located far from the volcanic front than in the remaining two primary magmas, which would imply that LIL/HFS ratios (or degree of contribution of LIL elements originating from the subducted oceanic crust) become minimal at Rishiri volcano. One basalt and three andesites from Shiribeshi volcano have the restricted range of low87Sr/86Sr ratios of 0.70297–0.70300, which indicates that the magma source for Shiribeshi volcano may be slightly more enriched in Sr isotopic compositions than theN-type MORB source.
Geochemie des neuentdeckten quartären submarinen Vulkans Shiribeshi im Nordöstlichen Japanischen Meer
Zusammenfassung Der Shiribeshi Seamount liegt östlich des Okushiri Rückens im nordöstlichen Japanischen Meer. Gesamtgesteins K-Ar Alter von Olivin-Augit-Andesiten von diesem Seamount ergeben Werte von 0,9 ± 0,2 Ma (Tsuchiya et al., 1989), und weisen darauf hin, daß Shiribeshi ein quartärer Vulkan im back-arc Bereich nahe dem Kreuzungspunkt des nordostjapanischen und des Kurilen-Inselbogens ist. Er besteht aus Gesteinen, deren Zusammensetzung von Basalt bis Rhyolit reicht. Petrographische Daten von 25 Proben, die von vier submarinen Lokationen durch Dredging aufgesammelt wurden, weisen auf eine typische kalk-alkalische Inselbogenzusammensetzung hin. Die Verbreitung von inkompatiblen Elementen, die unter anderem K, Rb, Sr, Nb, P, Ti, Y und Zr umfassen, in 16 representativen Proben wird zusammen mit denen von quartären vulkanischen Gesteinen aus dem nordöstlichen Japanischen und den Kurilen-Inselbogen diskutiert; dabei wird Variationen der Zusammensetzung über die Bögen hinweg besondere Beachtung geschenkt. Die so ermittelte Zusammensetzung des primären Magmas des Shiribeshi Vulkans wird durch höhere inkompatible Elementgehalte und höhere Zr/Y Verhältnisse charakterisiert, wenn man sie mit primären Magmen an der vulkanischen Stirn des Inselbogens vergleicht. HFS Element-Konzentrationen lassen erkennen, daß der Grad teilweiser Aufschmelzung für drei primäre Magmen von Oshima-Oshima, Shiribeshi und Rishiri im nordöstlichen Japanischen Meer graduell mit zunehmender Entfernung von der vulkanischen Stirm abnimmt. Die Gehalte an LIL Elementen und besonders an K und Rb sind in dem primären Magma des Rishiri Vulkans, der weit von der vulkanischen Front entfernt liegt, höher als in den zwei anderen primären Magmen. Dies weist darauf hin, daß LIL/HFS Verhältnisse (oder der Beitrag von LIL Elementen, die aus subduzierter ozeanischer Kruste stammen) am Rishiri Vulkan ein Minimum erreichen. Ein Basalt und drei Andesite von Shiribeshi zeigen87Sr/86Sr Verhältnisse von 0,70297 bis 0,70300; dies läßt erkennen, daß die Quelle des Magmas für Shiribeshi etwas mehr an87Sr angereichert war, als dieN-Typ Quelle.


With 7 Figures  相似文献   
2.
Source models for the 1993 Hokkaido Nansei-Oki earthquake tsunami   总被引:1,自引:0,他引:1  
A source model for the 1993 Hokkaido Nansei-Oki tsunami must satisfy certain conditions. Such conditions are presented in this paper, and two methods are used to determine the best source model for this event. A trial-and-error method selects DCRC-17a as the best among 24 different models. This model has three fault planes dipping westward. To reproduce well the tide gauge records at two locations, an inversion analysis is used to modify the dislocation of DCRC-17a.  相似文献   
3.
For Probabilistic Tsunami Hazard Analysis (PTHA), we propose a logic-tree approach to construct tsunami hazard curves (relationship between tsunami height and probability of exceedance) and present some examples for Japan for the purpose of quantitative assessments of tsunami risk for important coastal facilities. A hazard curve is obtained by integration over the aleatory uncertainties, and numerous hazard curves are obtained for different branches of logic-tree representing epistemic uncertainty. A PTHA consists of a tsunami source model and coastal tsunami height estimation. We developed the logic-tree models for local tsunami sources around Japan and for distant tsunami sources along the South American subduction zones. Logic-trees were made for tsunami source zones, size and frequency of tsunamigenic earthquakes, fault models, and standard error of estimated tsunami heights. Numerical simulation rather than empirical relation was used for estimating the median tsunami heights. Weights of discrete branches that represent alternative hypotheses and interpretations were determined by the questionnaire survey for tsunami and earthquake experts, whereas those representing the error of estimated value were determined on the basis of historical data. Examples of tsunami hazard curves were illustrated for the coastal sites, and uncertainty in the tsunami hazard was displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves.  相似文献   
4.
Matsutomi  H.  Shuto  N.  Imamura  F.  Takahashi  T. 《Natural Hazards》2001,24(3):199-212
Runup data in Biak Island and itsnearby islets are described with discussions oftsunami magnitude and a few characteristics such aswitnessed arrival times, wave periods and wavenumbers. From an engineering viewpoint, a relationbetween inundation depth and current velocity on landis also described with relations between inundationdepth and degree of damage to houses and between sanderosion depth and current velocity in backshoreregion, based on data collected from the present andpast tsunamis.  相似文献   
5.
Numerical analysis of the 1992 Flores Island, Indonesia earthquake tsunami is carried out with the composite fault model consisting of two different slip values. Computed results show good agreement with the measured runup heights in the northeastern part of Flores Island, except for those in the southern shore of Hading Bay and at Riangkroko. The landslides in the southern part of Hading Bay could generate local tsunamis of more than 10 m. The circular-arc slip model proposed in this study for wave generation due to landslides shows better results than the subsidence model, It is, however, difficult to reproduce the tsunami runup height of 26.2 m at Riangkroko, which was extraordinarily high compared to other places. The wave propagation process on a sea bottom with a steep slope, as well as landslides, may be the cause of the amplification of tsunami at Riangkroko. The simulation model demonstrates that the reflected wave along the northeastern shore of Flores Island, accompanying a high hydraulic pressure, could be the main cause of severe damage in the southern coast of Babi Island.  相似文献   
6.
Abstract Recent advanced chronological studies for the Tertiary volcanic rocks from the Northeast (NE) Japan arc revealed three volcanic fronts which differed in temporal and spatial distribution. These fronts were (i) the Matsumae-Shizukuishi-Shiogama line of 22–25 Ma which is obliquely across the Quaternary volcanic front (QVF); (ii) the Tomari-Shiogama line of 13–16 Ma which exists 30–50 km east of the QVF and (iii) a line of 0–8 Ma which is the same as the QVF. The first shifting of the 22–25 Ma line to the 13–16 Ma one was due to the counterclockwise rotation of the NE Japan arc during 20–12 Ma as proposed by Otofuji et al . (1985), and the second shifting of the 13–16 Ma line to the 0–8 Ma line could have contributed to a decrease in the dip of the slab of the Pacific plate which subducted beneath the NE Japan arc during 13–8 Ma.  相似文献   
7.
Hiroyuki  Ishimoto  Kenji  Shuto  Yoshihiko  Goto 《Island Arc》2006,15(2):251-268
Abstract   Middle Miocene to Quaternary primitive basalts and high magnesian andesite (HMA) in North Hokkaido resulted from three periods of intense volcanism; early-stage (12–10 Ma), middle-stage (9–7 Ma) and late-stage (3–0 Ma). Based on the chemical compositions of olivines and chromian spinels and bulk chemistry of the primitive rocks, we examined depths of segregation of the calculated primary magmas and the degrees of partial melting of the source mantle. In the context of asthenospheric mantle upwelling, petrological data from the present study can be accounted for by the secular change in the depth of magma segregation from the upwelled asthenospheric mantle, which is composed of fertile peridotite. Thus, the early-stage primary magmas were generated by higher degrees of partial melting of the shallower part of hot asthenospheric mantle, whereas the middle- and late-stage primary magmas resulted from lower degrees of partial melting of a deeper part of the asthenospheric mantle. The early-stage HMA magma was generated by partial melting of the remnant subcontinental lithospheric mantle composed of refractory peridotite. This melting might have resulted from an increased geothermal gradient caused by upwelling of hot asthenosphere.  相似文献   
8.
9.
The present study focuses on evaluation of the maximum and minimum water levels caused by tsunamis as risk factors for operation and management at nuclear power facilities along the coastal area of Japan. Tsunamis generated by submarine earthquakes are examined, basing literature reviews and databases of information on historical tsunami events and run-up heights. For simulation of water level along the coast, a numerical calculation system should be designed with computational regions covering a particular site. Also the calculation system should be verified by comparison of historical and calculated tsunami heights. At the beginning of the tsunami assessment, the standard faults, their locations, mechanisms and maximum magnitudes should be carefully estimated by considering historical earthquake-induced tsunamis and seismo-tectonics at each area. Secondly, the range of errors in the model parameters should be considered since earthquakes and tsunamis are natural phenomena that involve natural variability as well as errors in estimating parameters. For these reasons, uncertainty-induced errors should be taken into account in the process of tsunami assessment with parametric study of the tsunami source model. The element tsunamis calculated by the standard fault models with the errors would be given for the design. Then, the design tsunami can be selected among the element tsunamis with the most significant impact, maximum and minimum water levels, on the site, bearing in mind the possible errors in the numerical calculation system. Finally, the design tsunami is verified by comparison with the run-up heights of historical tsunamis, ensuring that the design tsunami is selected as the highest of all historical and possible future tsunamis at the site.  相似文献   
10.
In 2011, Japan was hit by a tsunami that was generated by the greatest earthquake in its history. The first tsunami warning was announced 3 min after the earthquake, as is normal, but failed to estimate the actual tsunami height. Most of the structural countermeasures were not designed for the huge tsunami that was generated by the magnitude M = 9.0 earthquake; as a result, many were destroyed and did not stop the tsunami. These structures included breakwaters, seawalls, water gates, and control forests. In this paper we discuss the performance of these countermeasures, and the mechanisms by which they were damaged; we also discuss damage to residential houses, commercial and public buildings, and evacuation buildings. Some topics regarding tsunami awareness and mitigation are discussed. The failures of structural defenses are a reminder that structural (hard) measures alone were not sufficient to protect people and buildings from a major disaster such as this. These defenses might be able to reduce the impact but should be designed so that they can survive even if the tsunami flows over them. Coastal residents should also understand the function and limit of the hard measures. For this purpose, non-structural (soft) measures, for example experience and awareness, are very important for promoting rapid evacuation in the event of a tsunami. An adequate communication system for tsunami warning messages and more evacuation shelters with evacuation routes in good condition might support a safe evacuation process. The combination of both hard and soft measures is very important for reducing the loss caused by a major tsunami. This tsunami has taught us that natural disasters can occur repeatedly and that their scale is sometimes larger than expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号