首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   2篇
  国内免费   1篇
大气科学   7篇
地球物理   18篇
地质学   36篇
海洋学   15篇
天文学   10篇
自然地理   2篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   4篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1989年   3篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1981年   1篇
  1966年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
Organic molecules such as proteins can be preserved in certain fossils. The bulk properties of fossil proteins of both vertebrates and invertebrates have been studied for over half a century. Named proteins have so far been identified, however, only in vertebrate fossils, such as collagen from mammoth bones. Using immunological assays, we examined 1500 year old fossils of the extinct land snail Mandarina luhuana from the Bonin islands for the presence of dermatopontin, a molluscan shell matrix protein. First, we examined the shell microstructure and mineralogy of the fossil shells using scanning electron microscopy (SEM) and powder X-ray diffraction (XRD) in order to estimate the extent of diagenetic alteration. The results suggest that the original microstructure and mineralogy of the shells are preserved. Antiserum raised against the Type-1 dermatopontin fragment of the living land snail Euhadra brandtii showed significant immunological reactivity with the extracts from the fossil shells of M. luhuana. Immunological binding curves drawn for the shell extracts of extant M. aureola and the extinct M. luhuana confirmed the presence of dermatopontin in the fossil shells and provided an estimate that about 75–98% of the original dermatopontin was lost from the M. luhuana fossils. This is the first report of a named protein being identified in invertebrate fossils.  相似文献   
2.
Sedimentation process of fine-grained terrigenous red soils was observed on the seafloor by coral reefs near an estuary using a paired mooring of turbidity meter and sediment trap or a mooring of sediment trap and current meter. Silty clays contained in the bottom calcareous sands were mainly resuspended and trapped in both surface and bottom layer traps, at noncatastrophic normal sedimentation periods. In addition, silty clays were supplied to this mooring site by inflowing river. Turbidity and the flux rate determined by sediment traps show certain relationship accompanied with the coefficient, which is changed by precipitation, current, and other conditions. Resuspension process caused by a typhoon was recorded as both core sequence of sediment trap and time-series data of bottom current. Maximum velocity of 49.5 cm/s was recorded from bottom currents resulting from the passing of attyphoon at the mooring site. A graded sand layer is interbedded in dark-gray, silty clay and considered to be a resuspended sediment resulting from the passing of the typhoon. Flux of the resuspended sediments by the typhoon was estimated from this core sequence and compared to the flux observed at the normal sedimentation.  相似文献   
3.
4.
5.
Abstract. Fluid inclusion and oxygen isotope studies are performed to obtain temperatures and oxygen isotopic compositions of hydrothermal fluids for the vein-type tungsten-copper deposit at Takatori in Ibaraki Prefecture, Japan. Temperatures of the hydrothermal fluids are calculated from fluid inclusion data. The calculation incorporates the effects of the salinity, gas concentration, and fluid pressure. The fluid temperatures range from 370 to 460C. For these calculations, this study obtains a density equation for H2O-NaCl-CO2 solution at the vapor-liquid two-phase boundary. Then the present study combines the obtained equation with the equation of state by Bowers and Helgeson (1983).
The fluid temperatures determined in this study are applied to the calculation of oxygen isotopic compositions of the hydrothermal fluids. The calculation of the oxygen isotopic compositions is based on the oxygen isotope analyses of vein quartz. The oxygen isotopic compositions of vein quartz range from +13.5 to +14.4 % relative to SMOW. Then, the oxygen isotopic compositions of the hydrothermal fluids in equilibrium with the vein quartz are calculated to be from +9.7 to +10.5 %. These δ18Ofluid values agree with those of magmatic fluids derived from the ilmenite-series granitic rock, which is related to the mineralization. Keywords: Takatori tungsten-copper deposit, fluid inclusion, oxygen isotope, vein quartz, H2O-NaCl-CO2 solution, density  相似文献   
6.
A reconnaissance investigation has been carried out on melting relationships in the system Fe-FeO at pressures up to 25 GPa and temperatures up to 2200° C using an MA-8 apparatus. Limited studies were also made of the Co-CoO and Ni-NiO systems. In the system FeFeO, the rapid exsolution of FeO from liquids during quenching causes some difficulties in interpretation of textures and phase relationships. The Co-CoO and Ni-NiO systems are more tractable experimentally and provide useful analogues to the Fe-FeO system. It was found that the broad field of liquid immiscibility present at ambient pressure in the Co-CoO system had disappeared at 18 GPa, 2200° C and that the system displayed complete miscibility between molten Co and CoO, analogous to the behaviour of the Ni-NiO system at ambient pressure. The phase diagram of the system Fe-FeO at 16 GPa and from 1600–2200° C was constructed from interpretations based on the textures of quenched run products. The solubility of FeO in molten iron is considerably enhanced by high pressures. At 16 GPa, the Fe-FeO eutectic contains about 10–15 mol percent FeO and the eutectic temperature in this iron-rich region of the system occurs at 1700±25° C, some 350° C below the melting point of pure iron at the same pressure. The solubility of FeO in molten Fe increases rapidly as temperature increases from 1700 to 2200° C. A relatively small liquid immiscibility field is present above 1900° C but is believed to be eliminated above 2200° C. This inference is supported by thermodynamic calculations on the positions of key phase boundaries. A single run carried out on an Fe50 FeO50 composition at 25 GPa and 2200° C demonstrated extensive and probably complete miscibility between Fe and FeO liquids under these conditions. The melting point of iron is decreased considerably by solution of FeO at high pressures; moreover, the melting point gradient (dP/dT) of the Fe-FeO eutectic is much smaller than that of pure iron and is also smaller than that of mantle pyrolite under the P, T conditions studied. These characteristics make it possible for melting of metal phase and segregation of the core to proceed within the Earth under conditions where most of the mantle remains below solidus temperatures. Under these conditions, the core would inevitably contain a large proportion of dissolved FeO. It is concluded therefore, that oxygen is likely to be the principal light element in the core. The inner core may not be composed of pure iron, as often proposed. Instead, it may consist of a crystalline oxide solid solution (Ni, Fe)2O.  相似文献   
7.
Oxygen isotope exchange rate between dissolved sulfate and water was experimentally determined at 100, 200 and 300°C. The isotope exchange rate is strongly dependent on temperature and pH of the solution. Combining the temperature and pH dependence of the reaction rate, the exchange reaction was estimated to be first-order with respect to sulfate. The logarithm of apparent rate constant of exchange reaction at a given temperature is a function of the pH calculated at the experimental temperatures. From the pH dependence of the apparent rate constant, it was deduced that the isotope exchange reaction between dissolved sulfate and water proceeds through collision between H2SO04 and H2O at low pH, and between HSO?4 and H2O at intermediate pH. The isotope exchange rate obtained indicates that oxygen isotope geothermometry utilizing the studied isotope exchange is suitable for temperature estimation of geothermal reservoirs. The extrapolated half-life of this reaction to oceanic temperature is about 109 years, implying that exchange between oceanic sulfate and water cannot control the oxygen isotope ratio of oceanic sulfates.  相似文献   
8.
Abstract: Pyrite rich in Zn, up to 3.1 wt%, was found in the TAG active mound of the TAG hydrothermal field, the slow-spreading Mid-Atlantic Ridge at 26°08'N and 44°49'W. The Zn-rich pyrite is characterized by an optical homogeneity, a homogeneous distribution of Zn in the back-scattered electron images, both at a magnification of about 500, a negative correlation between Fe and Zn contents of the pyrite and a rather small unit cell edge (a0 = 5.4117 ± 0.0008Å), strongly indicating that the detected Zn is present in the pyrite in solid solution. Such Zn concentrations are observed exclusively in dendritic pyrite, suggesting that the Znrich pyrite grew from hydrothermal fluids of a high degree of supersaturation due to quenching on the seafloor.  相似文献   
9.
A new multi-anvil type high-presure apparatus has been developed using sintered diamond anvils to generate pressures over 30 GPa and temperatures up to about 2000°C. A maximum sample volume of about 1 mm3 is available in this system. The pressure was confirmed by dissociation of forsterite into Mg-perovskite and periclase. The basic techniques and problems in utilizing sintered diamond in the MA8 type high-pressure apparatus are discussed with an emphasis on the future prospect of incorporating simultancous X-ray diffraction observation.  相似文献   
10.
Oxygen isotope exchange between anhydrite and water was studied from 100 to 550°C, using the partial equilibrium method. The exchange rate was extremely low in NaCl solution. In the lower-temperature range, acid solutions were used to produce sufficient reaction to determine the oxygen isotope fractionation factors. The fractionation factors obtained in the present study are definitely different from those given by Lloyd [8]. They are similar to those for the HSO4?-water system studied by Mizutani and Rafter [19], and are consistently 2‰ higher than those of the barite-water system by Kusakabe and Robinson [5]. The temperature dependence of the oxygen isotope fractionation factors was calculated by the least squares method in which the weight was taken to be inversely proportional to the experimental error. The fractionation is given by:103lnαanhydrite-water=3.21×(103/T)2?4.72Available δ18O values of natural anhydrite were used to test the validity of this expression. It is shown that this newly revised geothermometer can be successfully applied to natural hydrothermal anhydrite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号