首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
海洋学   1篇
  2018年   1篇
  1995年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
2.
Recent accidents in underground structures have raised the risk awareness of the geotechnical engineering community. Geotechnical design is subject to significant uncertainties in load and strength parameters as well as in engineering models. However, engineering models which objectively address such uncertainties in design are still scarce. This paper presents an objective framework for the quantification of the risks involved in underground structures excavated in fractured rock masses, where structural failures may occur due to block falls. The framework considers the structure as a distributed system, where falling block probabilities are integrated over the main structural dimension. Random block size and geometry, arising from random joint orientation, are taken into account, as well as uncertainties in joint strength and geometrical parameters. A cost function is used to quantify failure consequences in terms of the block size. The framework is demonstrated in an application to a case study involving a real structure: the Paulo Afonso IV power station cavern. Results of the case study show that the studied cavern presents high reliability and very low risk. The framework proposed herein is shown to be a practical tool for the risk evaluation of underground structures constructed in rock masses, such as caverns and tunnels.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号