首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
地质学   4篇
海洋学   2篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2016年   1篇
  2012年   1篇
  2011年   3篇
排序方式: 共有7条查询结果,搜索用时 296 毫秒
1
1.
Permafrost records, accessible at outcrops along the coast of Oyogos Yar at the Dmitry Laptev Strait, NE-Siberia, provide unique insights into the environmental history of Western Beringia during the Last Interglacial. The remains of terrestrial and freshwater organisms, including plants, coleopterans, chironomids, cladocerans, ostracods and molluscs, have been preserved in the frozen deposits of a shallow paleo-lake and indicate a boreal climate at the present-day arctic mainland coast during the Last Interglacial. Terrestrial beetle and plant remains suggest the former existence of open forest-tundra with larch (Larix dahurica), tree alder (Alnus incana), birch and alder shrubs (Duschekia fruticosa, Betula fruticosa, Betula divaricata, Betula nana), interspersed with patches of steppe and meadows. Consequently, the tree line was shifted to at least 270 km north of its current position. Aquatic organisms, such as chironomids, cladocerans, ostracods, molluscs and hydrophytes, indicate the formation of a shallow lake as the result of thermokarst processes. Steppe plants and beetles suggest low net precipitation. Littoral pioneer plants and chironomids indicate intense lake level fluctuations due to high evaporation. Many of the organisms are thermophilous, indicating a mean air temperature of the warmest month that was greater than 13 °C, which is above the minimum requirements for tree growth. These temperatures are in contrast to the modern values of less than 4 °C in the study area. The terrestrial and freshwater organism remains were found at a coastal exposure that was only 3.5 m above sea level and in a position where they should have been under sea during the Last Interglacial when the global sea level was 6–10 m higher than the current levels. The results suggest that during the last warm stage, the site was inland, and its modern coastal situation is the result of tectonic subsidence.  相似文献   
2.
Izvestiya, Atmospheric and Oceanic Physics - The archaeal composition of permafrost samples taken during the drilling of frozen marine sediments in the area of the Barentsburg coal mine on the east...  相似文献   
3.
Arctic permafrost coasts are sensitive to changing climate. The lengthening open water season and the increasing open water area are likely to induce greater erosion and threaten community and industry infrastructure as well as dramatically change nutrient pathways in the near-shore zone. The shallow, mediterranean Arctic Ocean is likely to be strongly affected by changes in currently poorly observed arctic coastal dynamics. We present a geomorphological classification scheme for the arctic coast, with 101,447?km of coastline in 1,315 segments. The average rate of erosion for the arctic coast is 0.5?m? year?1 with high local and regional variability. Highest rates are observed in the Laptev, East Siberian, and Beaufort Seas. Strong spatial variability in associated database bluff height, ground carbon and ice content, and coastline movement highlights the need to estimate the relative importance of shifting coastal fluxes to the Arctic Ocean at multiple spatial scales.  相似文献   
4.
Izvestiya, Atmospheric and Oceanic Physics - This work summarizes the archived data of geocryological and hydrogeological conditions in the west of Nordenskiold Land on the Spitsbergen Archipelago....  相似文献   
5.
We investigated the subfossil chironomid fauna of 150 lakes situated in Yakutia, northeastern Russia. The objective of this study was to assess the relationship between chironomid assemblage composition and the environment and to develop chironomid inference models for quantifying past regional climate and environmental changes in this poorly investigated area of northern Russia. The environmental data and sediment samples for chironomid analysis were collected in 5 consecutive years, 2003–2007, from several regions of Yakutia. The lakes spanned wide latitudinal and longitudinal ranges and were distributed through several environmental zones (arctic tundra, typical tundra, steppe-tundra, boreal coniferous forest), but all were situated within the zone of continuous permafrost. Mean July temperature (TJuly) varied from 3.4°C in the Laptev Sea region to 18.8°C in central Yakutia near Yakutsk. Water depth (WD) varied from 0.1 to 17.1 m. TJuly and WD were identified as the strongest predictor variables explaining the chironomid communitiy composition and distribution of the taxa in our data set. Quantitative transfer functions were developed using two unimodal regression calibration techniques: simple weighted averaging (WA) and weighted averaging partial least squares (WA-PLS). The two-component TJuly WA-PLS model had the best performance. It produced a strong coefficient of determination (r 2 boot = 0.87), root mean square error of prediction (RMSEP = 1.93), and max bias (max biasboot = 2.17). For WD, the one-component WA-PLS model had the best performance (r 2 boot = 0.62, RMSEP = 0.35, max biasboot = 0.47).  相似文献   
6.
Permafrost degradation influences the morphology, biogeochemical cycling and hydrology of Arctic landscapes over a range of time scales. To reconstruct temporal patterns of early to late Holocene permafrost and thermokarst dynamics, site‐specific palaeo‐records are needed. Here we present a multi‐proxy study of a 350‐cm‐long permafrost core from a drained lake basin on the northern Seward Peninsula, Alaska, revealing Lateglacial to Holocene thermokarst lake dynamics in a central location of Beringia. Use of radiocarbon dating, micropalaeontology (ostracods and testaceans), sedimentology (grain‐size analyses, magnetic susceptibility, tephra analyses), geochemistry (total nitrogen and carbon, total organic carbon, δ13Corg) and stable water isotopes (δ18O, δD, d excess) of ground ice allowed the reconstruction of several distinct thermokarst lake phases. These include a pre‐lacustrine environment at the base of the core characterized by the Devil Mountain Maar tephra (22 800±280 cal. a BP, Unit A), which has vertically subsided in places due to subsequent development of a deep thermokarst lake that initiated around 11 800 cal. a BP (Unit B). At about 9000 cal. a BP this lake transitioned from a stable depositional environment to a very dynamic lake system (Unit C) characterized by fluctuating lake levels, potentially intermediate wetland development, and expansion and erosion of shore deposits. Complete drainage of this lake occurred at 1060 cal. a BP, including post‐drainage sediment freezing from the top down to 154 cm and gradual accumulation of terrestrial peat (Unit D), as well as uniform upward talik refreezing. This core‐based reconstruction of multiple thermokarst lake generations since 11 800 cal. a BP improves our understanding of the temporal scales of thermokarst lake development from initiation to drainage, demonstrates complex landscape evolution in the ice‐rich permafrost regions of Central Beringia during the Lateglacial and Holocene, and enhances our understanding of biogeochemical cycles in thermokarst‐affected regions of the Arctic.  相似文献   
7.
Paleoenvironmental records from a number of permafrost sections and lacustrine cores from the Laptev Sea region dated by several methods (14C-AMS, TL, IRSL, OSL and 230Th/U) were analyzed for pollen and palynomorphs. The records reveal the environmental history for the last ca 200 kyr. For interglacial pollen spectra, quantitative temperature values were estimated using the best modern analogue method. Sparse grass-sedge vegetation indicating arctic desert environmental conditions existed prior to 200 kyr ago. Dense, wet grass-sedge tundra habitats dominated during an interstadial ca 200–190 kyr ago, reflecting warmer and wetter summers than before. Sparser vegetation communities point to much more severe stadial conditions ca 190–130 kyr ago. Open grass and Artemisia communities with shrub stands (Alnus fruticosa, Salix, Betula nana) in more protected and moister places characterized the beginning of the Last Interglacial indicate climate conditions similar to present. Shrub tundra (Alnus fruticosa and Betula nana) dominated during the middle Eemian climatic optimum, when summer temperatures were 4–5 °C higher than today. Early-Weichselian sparse grass-sedge dominated vegetation indicates climate conditions colder and dryer than in the previous interval. Middle Weichselian Interstadial records indicate moister and warmer climate conditions, for example, in the interval 40–32 kyr BP Salix was present within dense, grass-sedge dominated vegetation. Sedge-grass-Artemisia-communities indicate that climate became cooler and drier after 30 kyr BP, and cold, dry conditions characterized the Late Weichselian, ca 26–16 kyr BP, when grass-dominated communities with Caryophyllaceae, Asteraceae, Cichoriaceae, Selaginella rupestris were present. From 16 to 12 kyr BP, grass-sedge communities with Caryophyllaceae, Asteraceae, and Cichoriaceae indicate climate was significantly warmer and moister than during the previous interval. The presence of Salix and Betula reflect temperatures about 4 °C higher than present at about 12–11 kyr BP, during the Allerød interval, but shrubs were absent in the Younger Dryas interval, pointing to a deterioration of climate conditions. Alnus fruticosa, Betula nana, Poaceae, and Cyperaceae dominate early Holocene spectra. Reconstructed absolute temperature values were substantially warmer than present (up to 12 °C). Shrubs gradually disappeared from coastal areas after 7.6 kyr BP when vegetation cover became similar to modern. A comparison of proxy-based paleoenvironmental reconstructions with the simulations performed by an Earth system model of intermediate complexity (CLIMBER-2) show good accordance between the regional paleodata and model simulations, especially for the warmer intervals.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号