首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   9篇
地质学   19篇
海洋学   11篇
天文学   20篇
自然地理   3篇
  2019年   1篇
  2018年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   6篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1987年   1篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
2.
High-frequency (HF) radar systems are remote sensing tools that can be used to measure oceanographic parameters. Problems can occur when using the conventional periodogram (PG) method for computing power spectral estimates from backscattered radar signals. Temporal and spatial inhomogeneities within the radar measurement region can cause distortion in the spectra. This paper describes an instantaneous-frequency (IF) filtering technique that has been developed to measure the first-order modulation contained within the radar signal. Successful removal of this modulation is shown to yield an increased quality and quantity of ocean measurements  相似文献   
3.
OSCR is an HF radar system that has been developed for high spatial resolution coastal surface current measurement. This paper describes preliminary results that demonstrate that wave measurement can be successfully obtained from suitably processed OSCR data. Comparisons with data from a WAVEC directional buoy are presented and show encouraging agreement. Some of the limitations to the measurement process are discussed and indicate a maximum range of about 20 km. Surface current variability on short time scales presents the most serious obstacle to wave measurement. This appears to be more of a problem when the mean currents are large, in that in these circumstances the data fail initial quality control criteria. However, in lower mean currents, the effect is often still present and leads to errors in long wave measurement  相似文献   
4.
The design and use of a lightweight, retrievable, bottom-mounted current meter for taking current measurements to ocean depths of 1800 m are described.  相似文献   
5.
The modern analog technique typically uses a distance metric to determine the dissimilarity between fossil and modern biological assemblages. Despite this quantitative approach, interpretation of distance metrics is usually qualitative and rules for selection of analogs tend to be ad hoc. We present a statistical tool, the receiver operating characteristic (ROC) curve, which provides a framework for identifying analogs from distance metrics. If modern assemblages are placed into groups (e.g., biomes), this method can (1) evaluate the ability of different distance metrics to distinguish among groups, (2) objectively identify thresholds of the distance metric for determining analogs, and (3) compute a likelihood ratio and a Bayesian probability that a modern group is an analog for an unknown (fossil) assemblage. Applied to a set of 1689 modern pollen assemblages from eastern North America classified into eight biomes, ROC analysis confirmed that the squared-chord distance (SCD) outperforms most other distance metrics. The optimal threshold increased when more dissimilar biomes were compared. The probability of an analog vs no-analog result (a likelihood ratio) increased sharply when SCD decreased below the optimal threshold, indicating a nonlinear relationship between SCD and the probability of analog. Probabilities of analog computed for a postglacial pollen record at Tannersville Bog (Pennsylvania, USA) identified transitions between biomes and periods of no analog.  相似文献   
6.
This paper reports a design study for a space-based decametric wavelength telescope. While not a new concept, this design study focused on many of the operational aspects that would be required for an actual mission. This design optimized the number of spacecraft to insure good visibility of approx. 80% of the radio galaxies– the primary science target for the mission. A 5,000 km lunar orbit was selected to guarantee minimal gravitational perturbations from Earth and lower radio interference. Optimal schemes for data downlink, spacecraft ranging, and power consumption were identified. An optimal mission duration of 1 year was chosen based on science goals, payload complexity, and other factors. Finally, preliminary simulations showing image reconstruction were conducted to confirm viability of the mission. This work is intended to show the viability and science benefits of conducting multi-spacecraft networked radio astronomy missions in the next few years.  相似文献   
7.
Sediment yield from modern continental blocks is a function of the area (dissolved load) and hypsometry (mechanical load) of the blocks. Hypsographic curves for modern continental blocks show that the change in the percentage area flooded for any change in eustatic sea level depends on the size of the block and the absolute sea level. This allows predictions of changes in sediment yield around different sized blocks for any given eustatic change. The range in size of continental blocks is such that, for any given sea level change, the blocks will show different percentage changes in yield. Data from modern continental blocks are compared with theoretical results. Assuming that the rules governing modern hypsometries applied in the past, and a constant volume of continental crust, it is possible to estimate the hypsographic curves of former continental blocks. The implications of suggested past continental configurations and sea levels for sediment yield are discussed.  相似文献   
8.
Forced changes in the water head within a granite-penetrating borehole were found to induce anomalously large free-surface strains and tilts in the vicinity of the hole. This deformation is shown to be due to fluid-pressure-induced changes in the aperture of a compliant hydraulically-conductive fracture at a depth of 100 m and a quantitative analysis of the deformation data is performed to recover fracture characteristics. The importance of the effect for secular earth strain measurements is discussed in the light of the ubiquitous nature of both water table fluctuations and fractures in the shallow crust.  相似文献   
9.
10.
Data from two free soil gas sampling programs are evaluated for the effects of barometric pumping over time on measured soil gas volumes. One program collected data from the trapped atmosphere immediately above two hazardous waste landfill areas. Of these areas, one had extremely high soil gas emanations, whereas the other had a more modest soil gas release. The second experimental program involved the collection of free soil gas samples on a rough grid with an approximate spacing of 1.6 km over a 720-sq-km area. This reconnaissance effort was designed to establish regional soil gas background values and to establish the utility of this method as a geological mapping tool in the Atlantic Coastal Plain. Methane, ethane, propane, and hydrogen data are used for this study. The data suggest that there is a predictable change in soil gas volume with a given change in barometric pressure. The rate of change is greater with large soil gas volumes in permeable soils versus lower soil gas volumes in impermeable soils; however, a simple linear relationship seems to generate a predictable curve with a margin of error of approximately 50%. Furthermore, the results of this study indicate that barometric pumping effects should be strongly considered during soil gas screening efforts at hazardous waste sites as well as in regional studies for hydrocarbon source potential mapping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号